
大数据
文章平均质量分 85
香蕉可乐荷包蛋
努力找一个合适的工作。写代码的无聊的code,欢迎大家有问题沟通,或者解决不了的问题
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
前端开发处理‘流式数据’与‘非流式数据’,在接收完整与非完整性数据时应该如何渲染和使用
本文总结了前端处理数据的四种典型场景: 完整数据非实时渲染(如静态资源请求) 完整数据模拟实时效果(如打字效果) 流式数据等待完整处理(如大文件下载) 流式数据实时处理(如AI聊天) 针对每种场景提供了实现方案和技术选型建议,包括fetch、Streams API、WebSocket等技术应用,并给出了Vue/React框架下的优化示例。特别强调了流式数据的buffer处理和JSON增量解析技巧,为不同业务场景的数据处理提供了清晰的技术指导。原创 2025-06-03 19:58:02 · 794 阅读 · 0 评论 -
实现对deepseek流式返回的json数据,进行逐字解析并实时渲染
摘要:流式JSON数据实时解析与渲染方案 本文介绍如何处理流式返回的JSON数据实现实时渲染。核心是通过fetch+ReadableStream逐步接收数据,拼接缓冲字符串,并解决未完成JSON解析的难题。提供两种方案:1)按行或分隔符切分处理完整JSON片段;2)使用jsonparse等库进行增量解析。同时给出了实时UI渲染建议和完整代码示例。需要注意后端支持、错误处理、性能优化等关键点,建议在流结束时再做一次完整JSON验证。该方案适用于需要实时显示API流式响应内容的场景。原创 2025-06-03 19:37:54 · 885 阅读 · 1 评论 -
浅析时空数据存储、优化-来自前端的看法
时空数据存储与优化涉及数据建模、存储引擎选择、索引优化、查询性能等多个方面。关键策略包括:1) 数据建模,使用时间戳和空间参考系统;2) 存储引擎选择,如关系型数据库、NoSQL数据库或时空专用数据库;3) 索引优化,采用R-tree、Quadtree等空间索引和B-tree时间索引;4) 查询优化,支持范围查询、最近邻查询和时空查询;5) 数据压缩与分区,减少存储空间和查询范围;6) 分布式存储与计算,利用HDFS、Spark等处理大规模数据;7) 缓存与预计算,加速查询和减少计算开销;8) 可视化与分析原创 2025-05-18 07:58:20 · 1249 阅读 · 0 评论 -
大数据模型的构建与优化
原创 2025-05-11 20:01:11 · 1135 阅读 · 0 评论 -
流式数据(Streaming Data)和非流式数据(Batch Data)区别、使用场景、优化-来自前端的浅解
流式数据(Streaming Data)** 和 **非流式数据(Batch Data)原创 2025-05-10 19:36:35 · 1859 阅读 · 0 评论 -
大数据常见面试问题╮(╯▽╰)╭
以下是一些常见的大数据面试问题。原创 2025-04-17 14:53:42 · 793 阅读 · 0 评论 -
大数据常见的模型定义及应用场景建议╮(╯▽╰)╭
常见的大数据模型类型及其分析方法:原创 2025-04-17 20:57:49 · 1144 阅读 · 0 评论