985硕士搞Java还是大模型?

Java就算了吧,太卷了,尤其现在大环境下,更卷了。连外包要求本科了,还要求经验,经验再多又不行了,因为触碰35+红线了。。。

img

加上现在低代码平台正在吃掉CRUD基础岗,也就是说Java的话你一毕业就很难以0经历纯小白的姿态进入职场。

大模型这块肯定是风口,热度和机会都比Java强。但是算法的话还是算了吧,你去看看那些大厂算法岗招聘,清一色要求顶会论文+名校PhD,现在这行情,要是没个PhD头衔,连训练模型的显卡都摸不着。国内真正有完整训练能力的团队,掰着手指头都能数过来,全是头部大厂和那几个AI独角兽。别说训练了,现在连调参岗都卷成麻花。

**真正的机会在模型应用层。**当下的大模型落地进程,依然处于初期阶段,正是百废待兴的时候。尤其B端,现在很多企业的情况很有意思,手里攥着预算想搞智能化,但既不敢all in大模型,又不甘心只做表面功夫。还有就是国央企现在疯狂招"数字化转型人才",很多岗位挂着AI名头,实际进去就是写Python脚本。

这时候能快速搭建可落地的解决方案的人就特别吃香,可能只需要把开源模型微调下,做个增强检索,再设计好业务流程中的提示词,就能解决他们80%的痛点。这类项目往往技术难度不高,但对业务理解的要求不低,这正是硕士学历同学的优势——既有学习能力打底,又不像博士那样过于专注某个技术点。

所以,建议你搞模型应用方向,比死磕算法岗实在多了。

重点掌握:

提示词工程(Prompt Engineering)

基于提示词对大模型的使用,研究怎样问问题才能激发出大模型的能力。

API调用

选择一个流行的大模型(GPT、chatglm、千问等),学习其官方提供的API文档。通过API进行基础的请求和响应,熟悉大模型的基本功能和限制。

模型编排框架

吃透LangChain的六大核心模块(Models/Indexes/Chains/Agents/Memory/Callbacks),在Kaggle上找三个真实场景练手。

实践RAG全流程

学RAG重点抓三个模块:文档处理阶段练分块策略;向量化阶段对比不同嵌入模型效果;检索环节重点掌握混合搜索的调优技巧。拿公司年报或产品手册当练习素材,从PDF解析到最终问答效果验证走通全流程才算入门。

如果你闲自己摸索太麻烦,强烈建议你听一下知乎知学堂的**免费公开课,**课程是由几位业内大佬主讲的,2节直播课,从前沿主流大模型原理到AI应用开发框架,LangChain,AI Agent,模型微调技术,都会做一个全面的系统的介绍和梳理。现在直播中,还能与大佬对话答疑,因为都是业内的人士,对于你的研究方向尤其就业方向的洞察和见解会更切实际一些。机会很难得,可以先占个位置:

AI应用开发框架

当下大模型应用,从产品形态上正在沿着 AIGC(内容生成)、Insight(知识洞察)、Copilot(智能助手)、Agent(数字代理)四个阶段演进。

img

而应用开发的技术栈,也在按开源和闭源两条路线不断迭代和发展。

img

在构建不同应用时,你会接触到各种开发框架和工具,比如LangChain、Semantic Kernel 、Responses API…这些框架和工具尚处在探索和演进过程中,所以会不断面临新的东西。

Agent

大模型领域的“自动化”。通过加入“感知”、“记忆”、“规划”等机制,让大模型自主思考、决策、规划、执行,来解决问题。这部分目前的发展也是一日千里。

模型微调相关规划

了解Transformer结构,并且了解微调的基本原理和步骤、数据集的构建技巧,并学会如何选择合适的预训练模型和超参数进行微调。

Prompt Tuning

P-Tuning

Prefix Tuning

LoRA

QLoRA

AdaLoRA

模型产品部署和交付

了解常见的部署平台和工具,了解私有化部署的硬件选型知识,学会如何进行模型的打包、测试和发布。

建议在校期间重点培养三个能力:

一是快速上手新工具的能力。现在AI应用层的技术栈迭代特别快,去年还火热的工具今年可能就过时了。

二是跨系统整合的能力。很多项目需要把大模型API、传统数据库、企业OA系统这些拧在一起工作。

三是业务翻译能力。这点最容易被忽视,但恰恰是拉开差距的关键。由于大模型应用技术领域太新,一个大模型应用开发的团队内部常常会出现职责划分不清晰的问题。

img

这就需要你有更强大的业务理解能力,和产品经理密切配合,甚至要直接听取用户反馈,参与到从需求分析、系统设计一直到用户反馈的迭代中,而不是对着原型和需求文档闷头撸代码。

说到底,大模型应用领域的竞争还没到白热化阶段,很多岗位其实招不到合适的人。与其在算法岗和百万PhD卷生卷死,不如早点在应用层占个位置。等到企业都反应过来要搞AI转型的时候,作为既懂技术又明白业务逻辑的人,自然会成为关键角色。

招不到合适的人。与其在算法岗和百万PhD卷生卷死,不如早点在应用层占个位置。等到企业都反应过来要搞AI转型的时候,作为既懂技术又明白业务逻辑的人,自然会成为关键角色。

这条路子可能没有算法岗听起来光鲜,但实实在在能创造价值,职业发展也更可持续。

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

1.学习路线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述

👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值