[机器学习笔记] 什么是分类,什么是回归?

本文介绍了监督学习的基本概念,包括分类与回归的区别,以及一元和多元线性回归的定义。此外,还列举了多种分类算法,如感知机、K近邻、朴素贝叶斯等,并对这些算法进行了简单分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

监督学习中,

  • 如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),
  • 如果预测的变量是连续的,我们称其为回归。

回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

对于二维空间,线性是一条直线;对于三维空间,线性是一个平面,对于多维空间,线性是一个超平面。
参考: http://blog.csdn.net/qll125596718/article/details/8248249

以下内容参考:李航《统计学习方法》第12章

  • 分类算法有感知机、K近邻、朴素贝叶斯、决策树、逻辑回归与最大熵模型、支持向量机、提升方法。
  • 原始的感知机、支持向量机以及提升方法是针对二类分类的,可以将它们扩展到多类分类。
  • 感知机、K近邻、朴素贝叶斯、决策树是简单的分类算法,模型直观、实现容易。
  • 逻辑回归与最大熵模型、支持向量机、提升方法是较复杂但更有效的分类算法。

end

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值