pytorch中的注意力模型写法

这篇博客深入探讨了深度学习中的一种关键机制——注意力机制。通过矩阵运算,作者展示了如何将输入特征的维度变换,然后进行归一化处理,以计算相似度矩阵。这些步骤包括特征维度调整、L2范数归一化以及激活函数ReLU的应用,最终得到一个0到1之间的相似度矩阵。这种方法在理解和优化模型的注意力分配方面具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

f = f.view(n,-1,h*w)   #改变f维度,[batch_size,C,H,W]变为[batch_size,C,H*W]
f = f/(torch.norm(f,dim=1,keepdim=True)+1e-5)

aff = F.relu(torch.matmul(f.transpose(1,2), f),inplace=True)    #大小为HW*HW,去掉负值
aff = aff/(torch.sum(aff,dim=1,keepdim=True)+1e-5)      #变为0~1之间

cam = cam.view(n,-1,h*w)
cam_rv = torch.matmul(cam, aff).view(n,-1,h,w)      

另外一种方法:

sim_map = torch.bmm(query.transpose(1, 2), key)  #求相似度
sim_map = sim_map / 16
sim_map = sim_map / 0.1
sim_map = self.softmax(sim_map)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值