2021-04-12CAM相关

本文探讨了深度学习在目标检测中的应用,特别是阈值设置如何影响召回率。介绍了fasterrcnn、SSD和retinanet等基于anchor的检测模型,并强调了特征金字塔FPN的重要性。同时,提到了负样本挖掘策略,如选择高损失的负样本进行训练。此外,还讨论了针对小尺度人脸检测的优化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不同的阈值是为了增加召回率,The reason to use different thresholds is to increase the
recall. 

 

uc就是第一张图片中的normalized CAM

 

 

 

 

 

 

 

 

 

 

 

目录

 

 
 
 
 
 
 
 
 
 
 
 
 
 
针对小尺度人脸的特点,在框架策略、数据增广、损失函数等方面进行针对性改进
 
Detectron2框架:支持物体检测、实例分割、姿态估计、语义分割、全景分割等
SSD、retinanet、faster rcnn都是基于anchor的

自己设计anchor的大小、长宽比,这些都是超参数,也是模型的缺点

下采样的stride,就是anchor的铺设间隔
faster rcnn之后提出特征金字塔FPN,FPN是一种特征提取方式

 

 

 

 

 

 

faster rcnn的rpn阶段做一丁点改动就是retina net、SSD

 

 

 

 

难负样本挖掘:

8732个anchor,大部分都是负样本, 负样本的loss从大到小排列,选择前面loss大的

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值