
算法
文章平均质量分 92
小亮 Play NLP
精诚所至,金石为开!今天的挥汗如雨是为了明天的挥金如土!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习算法——EM算法
一、EM算法简介EM算法,指的是最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,在统计学中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。中文名em算法别名最大期望算法;期望最大化算法外文名Expectation Maximization Algorithm领域统计学可以有一些比较形象的比喻说法把这个算...原创 2018-05-01 10:37:59 · 3297 阅读 · 0 评论 -
GAN的理解与TensorFlow的实现
GAN的理解与TensorFlow的实现前言本文会从头介绍生成对抗式网络的一些内容,从生成式模型开始说起,到GAN的基本原理,InfoGAN,AC-GAN的基本科普,如果有任何有错误的地方,请随时喷,我刚开始研究GAN这块的内容,希望和大家一起学习。生成式模型何为生成式模型?在很多machine learning的教程或者公开课上,通常会把machine learning的...转载 2018-08-04 19:23:12 · 6894 阅读 · 0 评论 -
算法/NLP/深度学习/机器学习面试笔记
笔者信息:Next_Legend QQ:1219154092 机器学习 自然语言处理 图像处理 深度学习 ——2018.8.13于天津大学 GitHub 地址:https://github.com/imhuay/CS_Interview_Notes-Chinese深度学习/机器学习面试问题整理,想法来源于这个仓...转载 2018-08-13 17:33:03 · 871 阅读 · 0 评论 -
基于Keras的attention实战
要点: 该教程为基于Kears的Attention实战,环境配置: Wn10+CPU i7-6700 Pycharm 2018 python 3.6 numpy 1.14.5 Keras 2.0.2 Matplotlib 2.2.2 强调:各种库的版本型号一定要配置对,因为Keras以及Tensorflow升级更新比较频繁,很多函数更新后要么更换了名字,要么没有这个函数了...原创 2018-08-21 16:13:17 · 24599 阅读 · 12 评论 -
计算图上的微积分:反向传播
Calculus on Computational Graphs: Backpropagation计算图上的微积分:反向传播(翻译)作者:Chris Olah’s英文地址:http://colah.github.io/posts/2015-08-Backprop/描述: 小亮最近在看以色列大佬的NLP书籍《Neural Network Methods for Natur...原创 2018-09-05 11:05:25 · 505 阅读 · 0 评论 -
NFL定理及背景前提
什么是NFL(No Free Lunch Theorem) 我们在做模型时,都会在算法的选择上花费了大部分时间,会纠结在算法的好坏以及各自的优缺点,最终实现我们的目标函数和现实函数之间的总误差最小。我们也会...转载 2018-09-08 16:33:28 · 3815 阅读 · 1 评论 -
再谈数据结构
小亮今天和去法国读研的大学同学聊了聊,他需要数据结构C语言版本的资料,我就整理了一下,毕竟算法岗位很讲究逻辑的严谨性和规则,数据结构很重要的。详情请见下文!相关代码参考小亮的CSDN下载地址:https://download.csdn.net/download/jinyuan7708/10648168 这里是小亮的blog地址:https://legendtianjin.github.io/...原创 2018-09-05 21:28:41 · 238 阅读 · 0 评论 -
2019NLP求职指南(二)
NLP求职指南(二) 每日一语:我与春风皆过客 你携秋水揽星河! 笔者信息:Next_Legend QQ:1219154092 机器学习 自然语言处理 深度学习 统计概率论 小亮的博客:https://legendtianjin.g...原创 2019-05-26 21:00:54 · 473 阅读 · 0 评论