
AIVS
文章平均质量分 72
不被定义的程序猿
音视频安防小学生
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【OPENAIVS】YoloX转rknn模型
本文将YOLOX模型部署到瑞芯微NPU(RKNN)平台的完整流程分为四个步骤:1)环境准备,安装RKNN-Toolkit2和PyTorch等依赖工具;2)导出ONNX模型,修改YOLOX代码以分离后处理;3)转换RKNN模型,编写转换脚本并进行量化校准;4)端侧部署,在板端实现后处理逻辑。文中详细说明了每个步骤的关键配置和注意事项,包括模型结构调整、量化参数设置、后处理实现方法等,并提供了常见问题的解决方案,如算子不兼容、精度下降和性能优化等。该流程适用于RK3588等瑞芯微芯片平台。<|end▁of原创 2025-05-21 17:06:37 · 781 阅读 · 0 评论 -
【OPENAIVS】目标检测中如何使用80类目标来做通道占用检测
视频AI分析系统v1.0(纯cpu版)OPENCV 不支持cudaonnxruntime 不支持cuda支持yolov8支持libfacedetection原创 2025-05-17 13:53:19 · 643 阅读 · 0 评论 -
【AIVS】OPENAIVS开源视频推理系统简介
视频AI分析系统v1.0(纯cpu版)原创 2025-04-19 15:54:50 · 195 阅读 · 0 评论 -
cv::dnn::NMSBoxes和nms-free的比较
两者并非绝对对立,部分 NMS-free 方法可能结合轻量后处理(如聚类),而传统模型也可通过改进 NMS(如 Soft-NMS)提升性能。基于传统的非极大值抑制(NMS)算法,通过交并比(IoU)筛选重叠框,保留置信度最高的框,抑制冗余检测。:DETR(Transformer)、CenterNet(关键点)、YOLOv9-nmsfree 变体。适用于依赖密集候选框的传统检测模型(如 YOLO、Faster R-CNN、SSD)。(如 CenterNet):基于物体中心点或角点预测,自然减少重叠框。原创 2025-04-19 15:49:10 · 404 阅读 · 0 评论