
HACLON例程
文章平均质量分 95
主要以例程学习为主
晓纪同学
快乐创造价值
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
HALCON第七讲->标定
以下为HALCON相机标定技术的全面解析,涵盖单相机标定、多相机拼接标定、不同标定板类型、眼在手/眼在手机器人标定,以及二维/三维标定技术。内容包含算子原理、参数调优、工业应用和复杂案例实现。:相机固定,标定板随机械臂移动。原创 2025-06-12 19:15:13 · 764 阅读 · 0 评论 -
HALCON第六讲->测量和检测
以下针对HALCON的测量检测技术(边缘检测、卡尺工具、亚像素精度测量、几何关系测量)进行系统化解析,涵盖核心算子原理、参数调优、工业案例及完整代码实现。通过融合亚像素边缘提取、动态ROI调整和几何关系计算,HALCON可实现微米级工业检测。实际应用中需结合光学标定与参数迭代优化,以应对复杂工业场景的挑战。原创 2025-06-12 19:14:00 · 1025 阅读 · 0 评论 -
HALCON第五讲-> 形状匹配
以下是HALCON形状匹配算子的系统解析,涵盖原理、参数调优、工业场景应用及复杂案例实现,结合最新文档(HALCON 21.05)和工业实践。以下基于HALCON 21.05版本,系统梳理形状匹配的核心算子、原理、参数调优及工业级应用方案,结合代码示例和实战技巧进行深度解析。:在5000+案例中,形状匹配精度达±0.05像素(标定后),速度≤50ms/帧(1080p图像)。:提取ROI区域的边缘特征,生成多分辨率金字塔模型,支持旋转不变性。原创 2025-06-12 19:13:11 · 872 阅读 · 0 评论 -
HALCON第四讲->几何变换
以下针对HALCON几何变换技术进行系统梳理,结合工业场景需求、数学原理及参数调优策略,分类详解刚体变换、仿射变换、投影变换及非刚体变换的核心算子,并附综合案例。:在汽车零件检测中,通过投影变换+双三次插值,尺寸测量误差从±1.2mm降至±0.05mm。:将图像中的坐标位置映射到新坐标位置,不改变像素值,仅重新排列像素空间关系。:单应性矩阵将四边形映射到任意四边形(需4对非共线点)。:用于简化变换计算,二维坐标扩展为三维向量(如像素坐标。:模拟摄像头倾斜拍摄(PCB板检测中校正元件位置)原创 2025-06-12 19:12:25 · 1046 阅读 · 0 评论 -
HALCON第三讲->特征提取
以下基于HALCON 21.05版本,系统梳理特征提取与角点检测的核心算子,结合工业场景、参数调优及复杂案例进行深度解析。:在汽车零件检测中,亚像素边缘+几何拟合将尺寸误差控制在±0.03mm内,误检率<0.1%。:计算像素梯度矩阵的特征值(λ₁, λ₂ ≫0为角点)。:尺度/旋转不变性,适合复杂背景(如交通场景车辆识别)。:比Harris快5倍,适合实时系统(如流水线检测)。:定位安装孔 + 检测表面划痕 + 测量圆度误差。:定位安装孔 + 检测划痕 + 测量圆度误差。:区域面积异常时,需优化。原创 2025-06-12 19:10:10 · 881 阅读 · 0 评论 -
HALCON第二讲->预处理
在500+工业案例中,通过。原创 2025-06-12 19:09:07 · 890 阅读 · 0 评论 -
HALCON第一讲->数据结构、语法规则与思路
在汽车零部件检测中,亚像素测量(XLD)将尺寸公差控制从±0.1mm提升至±0.02mm。1.定位优先:通过模板匹配(find_shape_model)确定基准位置,建立坐标系。3.缺陷分离:动态阈值(dyn_threshold)适应光照变化,精准提取微小划痕。2.亚像素测量:使用测量工具(gen_measure_arc)获取高精度几何尺寸。4.分级判定:尺寸公差(±0.2mm)与缺陷数量双重判断标准。:处理低对比度缺陷(如透明物体划痕),传统算法难以稳定检测。HALCON的数据分为。原创 2025-06-12 19:08:07 · 755 阅读 · 0 评论 -
Haclon例程1-<剃须刀片检测程序详解>
haclon例程原创 2025-06-11 20:32:33 · 929 阅读 · 0 评论