超分辨按实现方式分两类:
1。双三次放大 + 网络 = 大图
2。 小图 + 网络 = 大图
对中间部分 “网络” 来说:
第1种 学习到了:怎样把 模糊图变成清晰图。SRCNN VDSR DRCN DRRN 是这类。
第2种 学习到了:怎样把 小图变成大图 。FSRCNN ESPCN LapSRN EDSR IDN DBPN 等几乎都是。
只有 SRGAN ESRGAN 对抗类,不追求和大图完全相同,是另类。
所以我们可以用SRCNN VDSR DRCN DRRN 来去模糊(去了前面放大部分的)。
测试:
测试图1
测试图2
1。去掉放大部分的 SRCNN 3倍模型:
1次
2次
3次
第4次
1次
2次
3次
4次
2。不放大的DRRN(DRRN_B1U9_20C128_iter_464056.caffemodel):
1
2
3
第4次循环
1
2
3
4次循环
由于网络并不用文字来训练,文字结果差一点。
3。无放大的VDSR(VDSR_Adam.caffemodel)
1
2
3
第4次
再加1次
1
2
3
第4次
可见,都有一点效果。
-------------------------------------------------------------
上面的1倍DRRN对一些不是很模糊的图有不错效果:
->
->
是不是清楚多了,这可能和DRRN重用一套数据有关(超分就有点生硬了)。