目标检测中的MAP的计算(逐步推导)

目标检测中的MAP的计算(逐步推导)

概念介绍

首先放一下前面一篇博文中提到的precision和recall的计算公式和概念。

P(precision) = TP/(TP+FP) 在目标检测中就是检测出的所有框中预测正确的比例。

R(recall) = TP/(TP+FN) 在目标检测中就是所有的ground truth(不懂ground truth的自行百度,简单点就是你的训练数据中事先标注好的bboxes)中检测出来的部分所占的比例。

我们假设一个场景,一共有两张图片,有两个类别,一个类别是人一个类别是汽车。

假如图中有5个标注为汽车的ground truth, 那么你检测到的汽车有两个, 那么对于这张图, 汽车类的 recalls 就是 2/5。

假如图中有3个人的ground truth, 你检测到的也是三个框, 但是其中只有一个框检测吻合到你的ground truth,另外两个检测成人了, TP = 1, FP = 2, 那么precision 就是 1/3

TP和FP的求解

下面正式来定义我们的场景,还是用上面的场景!!!

我们的训练集只有两张
如果人label = 1, 汽车label=2, 下面直接用vector表示

1、第一张图label = [1, 1, 2, 1, 1] 也就是说有四个人一台车, 一共五个gr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值