题目描述
给定c1,c2,e1,e2,Nc1,c2,e1,e2,Nc1,c2,e1,e2,N,构造一个数mmm满足:
c1=me1%Nc1=m^{e1}\%Nc1=me1%N
c2=me2%Nc2=m^{e2}\%Nc2=me2%N
或者报告无解。
其中gcd(e1,e2)=1gcd(e1,e2)=1gcd(e1,e2)=1
解题思路
因为gcd(e1,e2)=1gcd(e1,e2)=1gcd(e1,e2)=1,由裴蜀定理,必然存在s,ts,ts,t,s×e1+t×e2=1s\times e1+t\times e2=1s×e1+t×e2=1。
可用exgcdexgcdexgcd求解。
那么m=ms×e1+t×e2=ms×e1×mt×e2=c1sc2tm = m^{s\times e1+t\times e2}=m^{s\times e1}\times m^{t\times e2}=c1^{s}c2^{t}m=ms×e1+t×e2=ms×e1×mt×e2=c1sc2t。
注意sss为负的情况需要特殊处理一下。
#include<bits/stdc++.h>
using namespace std;
#define int long long
int mul(int a,int b,int mod)
{
int res=0;
while(b)
{
if(b&1)res=(res+a)%mod;
a=(a+a)%mod;
b>>=1;
}
return res;
}
void exgcd(int a,int b,int &x,int &y)
{
if(!b)
{
x=1;y=0;
return;
}
exgcd(b,a%b,y,x);
y=y-(a/b)*x;
}
int Pow(int a,int b,int mod)
{
int res=1;
while(b)
{
if(b&1)res=mul(res,a,mod);
a=mul(a,a,mod);
b>>=1;
}
return res;
}
int Inv(int x,int mod)
{
int a=0,b=0;
exgcd(x,mod,a,b);
return (a%mod+mod)%mod;
}
void solve()
{
int c1,c2,e1,e2,N;
scanf("%lld %lld %lld %lld %lld",&c1,&c2,&e1,&e2,&N);
int s=0,t=0;
exgcd(e1,e2,s,t);
int A=1,B=1;
if(s<0)c1=Inv(c1,N),s=-s;
if(t<0)c2=Inv(c2,N),t=-t;
A=Pow(c1,s,N);B=Pow(c2,t,N);
printf("%lld\n",mul(A,B,N));
}
signed main()
{
int T;
cin>>T;
while(T--)
{
solve();
}
return 0;
}