基于深度学习的手写签名验证系统的实现
1. 引言
手写签名作为一种生物特征,被广泛应用于身份验证中。它不仅是一种行为生物特征,而且在社会和金融机构中得到了广泛应用。随着技术的进步,在线签名验证已经成为一个重要的研究领域。传统的在线签名验证方法包括动态时间规整(Dynamic Time Warping)、隐马尔可夫模型(Hidden Markov Models)和支持向量机(Support Vector Machines),但这些方法在面对复杂的签名变化时显得力不从心。近年来,深度学习方法逐渐成为主流,尤其是在手写签名验证方面表现出色。然而,深度学习模型的训练和再训练计算成本较高,限制了其广泛应用。
2. Signature2Vec算法的特点
为了应对上述挑战,研究人员提出了一种名为Signature2Vec的算法,该算法具有以下显著特点:
- 坐标参考框架的不可知性 :无论签名的位置如何平移或旋转,算法都能保持一致性。
- 尺度不变性 :算法对手写签名的水平和垂直尺度变化具有鲁棒性。
- 高质量且轻量级的伪造检测分类器 :能够高效地区分真实签名和伪造签名。
Signature2Vec基于手写签名时采样的坐标时间序列,生成手写签名的向量嵌入。相比于传统方法,这种方法大幅降低了计算成本,同时保持了较高的准确性。
3. 算法的工作原理
3.1 数据预处理
手写签名的原始数据通常是以坐标时间序列的形式存