30、基于深度学习的手写签名验证系统的实现

基于深度学习的手写签名验证系统的实现

1. 引言

手写签名作为一种生物特征,被广泛应用于身份验证中。它不仅是一种行为生物特征,而且在社会和金融机构中得到了广泛应用。随着技术的进步,在线签名验证已经成为一个重要的研究领域。传统的在线签名验证方法包括动态时间规整(Dynamic Time Warping)、隐马尔可夫模型(Hidden Markov Models)和支持向量机(Support Vector Machines),但这些方法在面对复杂的签名变化时显得力不从心。近年来,深度学习方法逐渐成为主流,尤其是在手写签名验证方面表现出色。然而,深度学习模型的训练和再训练计算成本较高,限制了其广泛应用。

2. Signature2Vec算法的特点

为了应对上述挑战,研究人员提出了一种名为Signature2Vec的算法,该算法具有以下显著特点:

  • 坐标参考框架的不可知性 :无论签名的位置如何平移或旋转,算法都能保持一致性。
  • 尺度不变性 :算法对手写签名的水平和垂直尺度变化具有鲁棒性。
  • 高质量且轻量级的伪造检测分类器 :能够高效地区分真实签名和伪造签名。

Signature2Vec基于手写签名时采样的坐标时间序列,生成手写签名的向量嵌入。相比于传统方法,这种方法大幅降低了计算成本,同时保持了较高的准确性。

3. 算法的工作原理

3.1 数据预处理

手写签名的原始数据通常是以坐标时间序列的形式存

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值