大(语言)模型是什么?一文看懂大模型和小模型的差异

在当今的人工智能领域,大语言模型无疑是备受瞩目的焦点。从能与人流畅对话的 ChatGPT,到可辅助创作的文心一言,这些都离不开大语言模型的支撑。那么,大语言模型究竟是什么?它和我们常说的小模型又有哪些区别呢?下面就为你一一揭晓。

请添加图片描述

1、大语言模型的定义

大语言模型(Large Language Model,LLM)是一种基于海量文本数据训练的深度学习模型,它能够理解和生成人类语言。其核心原理是通过对大量的文本数据进行学习,捕捉语言中的规律、语法、语义以及知识,从而具备处理各种自然语言任务的能力。这些模型通常拥有数十亿甚至数千亿的参数,参数规模的庞大是其能够实现复杂语言处理的重要基础。

2、大语言模型的显著特点

  • 强大的语言理解与生成能力:大语言模型能够准确理解人类语言的含义,包括歧义句、隐喻、语境等复杂情况,并且可以生成连贯、通顺、符合逻辑的文本,就像人类写作一样自然。例如,它可以根据用户的需求写出一篇完整的文章、一首诗歌,甚至是一段代码注释。

  • 泛化能力突出:经过海量数据训练后,大语言模型在面对未见过的任务和数据时,也能表现出较好的性能。不需要针对特定任务进行大量的微调,就能快速适应新的场景。比如,一个训练好的大语言模型,既可以用来进行机器翻译,又能完成文本摘要任务。

  • 知识储备丰富:由于训练数据涵盖了书籍、网页、论文等各种类型的文本,大语言模型蕴含了丰富的世界知识。它可以回答各种常识性问题、解释专业概念,甚至能对一些复杂的事件进行分析和评论。

  • 上下文感知能力强:在对话或处理长文本时,大语言模型能够很好地理解上下文信息,保持对话的连贯性和一致性。比如在多轮对话中,它能记住之前的对话内容,并根据上下文做出合理的回应。

3、大语言模型的应用场景

  • 智能对话系统:像智能客服、聊天机器人等,大语言模型可以与用户进行自然、流畅的交流,准确理解用户的需求并提供相应的帮助。例如,电商平台的智能客服能够快速解答用户关于商品咨询、订单查询、售后问题等方面的疑问。

  • 内容创作辅助:无论是写文章、写邮件、创作小说,还是生成广告语、产品描述等,大语言模型都能提供灵感和帮助。它可以根据用户给出的主题和要求,生成相关的文本内容,大大提高创作效率。

  • 机器翻译:大语言模型能够实现多种语言之间的精准翻译,不仅翻译结果准确,还能保持原文的风格和语气。这为不同语言背景的人们之间的交流提供了极大的便利,促进了国际间的合作与沟通。

  • 信息检索与问答:用户可以通过自然语言向大语言模型提出问题,模型会从自身的知识储备中检索相关信息并给出准确的答案。比如,用户询问 “地球的直径是多少”,大语言模型能迅速给出正确的数值。

4、大模型和小模型的区别

  • 参数规模:大模型的参数数量通常在数十亿以上,甚至达到数千亿;而小模型的参数数量相对较少,一般在数百万到数亿之间。参数规模的差异直接导致了两者在处理复杂任务能力上的不同,大模型凭借庞大的参数能够学习到更多的语言规律和知识。

  • 训练数据:大模型需要海量的多样化文本数据进行训练,这些数据涵盖了各个领域、各种类型的内容;小模型的训练数据量相对较少,通常是针对特定任务或领域的数据集。丰富的训练数据使得大模型具备更广泛的知识和更强的泛化能力。

  • 功能范围:大模型具有广泛的功能,可以处理多种自然语言任务,如文本生成、翻译、问答、摘要等,并且在这些任务上都能表现出较好的性能;小模型则通常专注于某一特定的任务,如情感分析、命名实体识别等,在特定任务上可能有较高的精度,但功能相对单一。

  • 计算资源需求:大模型的训练和运行需要巨大的计算资源支持,包括高性能的 GPU、大量的内存等;小模型对计算资源的要求较低,可以在普通的计算机甚至移动设备上运行。

  • 适用场景:大模型适用于需要处理复杂语言任务、对模型的泛化能力和知识储备要求较高的场景,如智能对话系统、通用内容创作等;小模型则适用于对计算资源有限制、只需要完成特定简单任务的场景,如移动应用中的文本分类、简单的语音识别等。

综上所述,大语言模型凭借其庞大的参数规模、海量的训练数据和强大的能力,在众多领域发挥着重要作用。而小模型也因其自身的特点,在特定场景中有着不可替代的价值。了解它们之间的区别,有助于我们根据实际需求选择合适的模型来解决问题,推动人工智能技术更好地服务于人类。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

### 视觉语言模型的基本概念 视觉语言模型(Vision-Language Models, VLMs)是一种跨模态的人工智能技术,旨在连接视觉数据(如图像、视频)与自然语言之间的关系。这些模型可以理解并生成关于视觉内容的语言描述,或者反过来根据语言指令分析解释视觉信息[^1]。 具体来说,在图像描述任务中,VLM 需要识别图像中的对象、场景及其相互作用,并将其转化为连贯的自然语言叙述;而在图像问答任务中,则需结合输入的文字问题解析图像内容,提供精确的回答。这表明 VLM 不仅具备强的感知能力,还拥有一定的推理能力表达能力。 ### 工作原理 视觉语言模型的核心工作流程通常涉及以下几个方面: #### 跨模态特征提取 为了实现对多种类型的数据的理解,VLM 使用预训练方法来获取高质量的跨模态表示向量。例如,基于 Transformer 的架构被广泛应用于这一过程,因为它能有效捕捉序列间的依赖关系,无论是来自文本还是像素级的空间分布信息[^2]。 ```python import torch from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") image = ... # PIL image object text = ["a photo of a cat", "a photo of a dog"] inputs = processor(text=text, images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get probability distribution print(probs) ``` 此代码片段展示了如何利用 Hugging Face 提供的 `CLIP` 模型计算图片与若干候选词句之间的相似度得分,进而推断最匹配的结果。 #### 对齐机制 另一个关键技术是对齐机制的设计——即怎样让两个异质空间内的元素建立起映射关联。一些先进方案采用对比学习框架构建损失函数,促使正样本对拉近彼此距离的同时推开负样例组。 ### 应用领域 由于其卓越性能表现,VLM 正迅速渗透到多个实际应用场景之中: - **电子商务**: 自动生成商品详情页文案; - **社交媒体平台**: 辅助审核违规内容或增强用户体验交互界面设计; - **医疗健康行业**: 协助医生诊断疾病影像资料同时记录诊疗意见等复杂操作步骤说明文档撰写服务等等[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值