自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(271)
  • 收藏
  • 关注

原创 【RAG文档解析】PaddleOCR ppstructure模块深度解析

PaddleOCR是百度开源的超强中文 OCR 工具箱,支持多语言、多场景文本检测与识别。是 PaddleOCR 针对文档结构化场景推出的子模块,致力于实现文档版面分析、表格识别、关键信息抽取、文档重建等一站式结构化能力。版面分析(Layout Analysis):自动检测文档中的文本块、表格、图片、标题等区域表格结构识别(Table Structure Recognition):检测表格边界、单元格结构、表格内容关键信息抽取(KIE):如发票、简历、合同等场景下的字段抽取。

2025-07-18 15:45:51 10

原创 【RAG实战】用户反馈如何关联算法优化

传统的RAG系统一旦构建完成并部署,其知识库和检索算法通常是静态的。除非开发者手动更新数据或调整模型,否则它会一直以同样的方式回答同样的问题,无法从与用户的交互中学习。而基于用户反馈的动态Chunk权重优化,则打破了这一僵局。它将每一次用户交互都视为一次宝贵的“微型训练”。当用户为一个答案点赞时,他们实际上在告诉系统:“生成这个答案所依赖的上下文(即那些被召回的Chunks)是高质量、有用的。”反之,点踩则意味着这些上下文可能是错误的、不相关的或不完整的。通过建立一个闭环系统,将这些反馈信号量化并作用于每个

2025-07-18 14:49:17 8

原创 【读论文】AgentOrchestra 解读:LLM 智能体学会「团队协作」去解决复杂任务

分层多智能体架构:首次将指挥家-乐团 (Planner-Sub-agents)的分层协作模式系统性地应用于通用任务解决,有效分解复杂问题。模块化与可扩展性:智能体、工具、模型的解耦设计,使得系统可以像“搭乐高”一样灵活地组合和扩展,轻松加入新的能力(如新的子智能体或工具)。动态角色分配与协调:Planning Agent 能够根据任务进展动态地规划和分配子任务,实现了智能体间的闭环协调。统一的多模态工具接口。

2025-07-17 22:51:06 255

原创 【agent实战】基于 LangGraph 实现 Agentic RAG:原理、实战与创新全解

LangGraph是 LangChain 团队推出的开源框架,专注于用“有向图”方式构建复杂的 LLM 应用流程。它支持节点(Node)、边(Edge)、条件分支、循环等流程控制,极大提升了 LLM 应用的可组合性、可扩展性和可维护性。是当前 LLM 应用的主流范式,通过“检索+生成”结合,显著提升了大模型的事实性和可控性。传统 RAG 仅支持单轮检索和生成,难以处理复杂推理、多步决策等需求。

2025-07-17 22:45:09 161

原创 【RAG优化】利用线上日志构建RAG评测闭环的终极指南

将这些原始、杂乱的日志,通过一套系统性的方法,转化为结构化的、高质量的评测数据集,就如同在为我们的RAG系统编写一本“成长日记”。通过定期“阅读”这本日记,我们能清晰地看到它的优点与不足,从而指导其未来的发展方向。一个静态的、离线构建的评测集,虽然能提供一个稳定的基线,但它无法完全反映真实世界中用户查询的多样性、模糊性以及不断变化的需求。作为输入,即可对RAG系统的各个组件进行全面的、基于真实用户数据的诊断。有了海量的日志后,我们需要从中筛选出有价值的样本进行标注。这是利用日志构建的评测集进行诊断的核心。

2025-07-17 18:27:35 135

原创 FunASR Paraformer-zh:高效中文端到端语音识别方案全解

FunASR是阿里巴巴达摩院开源的端到端语音识别工具箱,集成了多种语音识别、语音活动检测(VAD)、说话人识别等模块。其中和是针对中文语音识别任务优化的端到端模型,分别适用于离线和流式场景。Paraformer 采用并行 Transformer 架构,兼具高精度和低延迟,广泛应用于智能客服、会议转写、语音助手等场景。主要特点端到端中文语音识别,支持离线和流式推理高精度、低延迟,适合工业级部署预训练模型开箱即用,支持 ModelScope 云推理支持多种硬件平台和部署方式流程。

2025-07-16 21:40:04 1282

原创 RAG的“诊断艺术”:从测试集结果倒追根源,精准优化检索、排序与生成

当RAG应用给出一个糟糕的答案时,开发者的第一反应可能是:“我的Prompt写得不够好?”这种基于“感觉”的猜测往往是低效的。通过构建一个包含黄金上下文信息的测试集,我们可以像一位经验丰富的医生一样,对RAG系统的各个“器官”进行独立的“健康检查”。一个用于RAG诊断的测试集,除了问题和答案,还需要包含中间环节的“黄金标准”。如果你的RAG流程包含Re-ranker,那么在评估完初期的召回后,需要单独评估Re-ranker的效果。RAG的优化是一个持续的过程,应该形成一个闭环。的文档块尽可能多地召回。

2025-07-15 23:13:34 11

原创 开源工具DeepFilterNet:实时语音降噪

是一款专为实时语音降噪设计的轻量级深度学习模型,由 Rikorose 等开发并开源。该项目以低延迟、高音质、低资源消耗为目标,适用于嵌入式设备、桌面应用、流媒体等多种场景。DeepFilterNet 支持多种平台(如 Linux、Windows、Mac、Raspberry Pi),并提供了 C/C++、Python、Rust 等多语言接口,便于集成到各类语音通信系统中。主要特点端到端实时语音降噪极低延迟(<10ms),适合通话、会议、直播等场景轻量级,适配嵌入式与移动设备。

2025-07-13 21:28:15 68

原创 RAG升级:Re-rank模型微调,实现极致检索精度

微调的本质是监督学习。我们需要向模型展示大量的样本,告诉它在我们的场景下,对于一个给定的查询,哪些文档是相关的(正样本),哪些是不相关的(负样本)。模型通过学习这些样本,调整其内部参数,使其输出的相关性分数能够准确地反映我们定义的“相关性”。

2025-07-13 21:18:56 110

原创 RAG进阶之术:用“父子Chunk”策略破解复杂查询的“上下文迷局”

父Chunk分割器: 可以是,设置一个较大的chunk_size(如1000-2000),或者是一个按文档逻辑结构(如Markdown标题)分割的分割器。子Chunk分割器: 也是一个,但chunk_size要小得多(如100-400),并且可以设置一定的。思路:对于一个大的文档块(如几页PDF),可以不直接将其作为“父”,而是先用LLM为其生成一个高质量的摘要。流程子Chunk:原始文档的细粒度文本块。父文档:对应子Chunk所在大章节的LLM生成摘要。检索。

2025-07-12 18:27:06 129

原创 FunASR fsmn-vad 模块深度解析:高效端到端语音活动检测方案

FunASR是阿里巴巴达摩院开源的端到端语音识别工具箱,集成了多种语音识别、语音活动检测(VAD)、说话人识别等模块。其中fsmn-vad是 FunASR 提供的高效、轻量级、工业级语音活动检测(Voice Activity Detection, VAD)方案,基于 FSMN(Feedforward Sequential Memory Network)结构,兼具高精度与低延迟,广泛应用于语音前端、流式 ASR、智能硬件等场景。主要特点端到端、轻量级、低延迟支持流式/离线推理。

2025-07-12 14:33:05 371

原创 【读代码】开源音乐分离工具Spleeter

Spleeter是由 Deezer Research 开发并开源的音乐源分离工具,基于 TensorFlow 实现,内置多种预训练模型,支持将混合音频一键分离为人声、伴奏、鼓、贝斯、钢琴等多个音轨(stem)。Spleeter 以其高效、易用、分离效果优异等特点,成为音乐信息检索(MIR)领域的事实标准工具之一。支持分离类型2 stems:人声/伴奏4 stems:人声/鼓/贝斯/其他5 stems:人声/钢琴/鼓/贝斯/其他应用场景。

2025-07-11 16:50:06 142

原创 OneFileLLM:一键聚合多源信息流

OneFileLLM 是一个功能强大的命令行工具,其核心使命是内容聚合。它能将来自不同地方、不同格式的数据源(如代码文件、PDF、URL、YouTube字幕等)整合到一个单一的、格式清晰的文本文件中。这个输出文件默认采用XML格式,这种结构化的方式极大地提升了LLM对上下文的理解能力,让模型能够更准确地“看”懂你给它的资料。多源输入: 支持本地文件/目录、GitHub仓库/PR/Issue、任意网页URL、ArXiv/DOI/PMID学术论文、YouTube视频字幕等。

2025-07-10 22:51:07 260

原创 LLaMA-Omni 深度解析:打开通往无缝人机语音交互的大门

与传统的 ASR 数据(语音->文本)或 TTS 数据(文本->语音)不同,这种 Speech-to-Speech (S2S) 的数据格式是训练端到端语音对话模型的关键。让我们深入其内部,探寻其工作原理。由于 LLM 的自回归(Auto-regressive)生成特性,文本和声学 Token 是一个接一个被预测出来的,这就天然地实现了文本显示和语音播放的流式同步,带来了极佳的实时交互体验。LLaMA-Omni 的运行依赖三个核心的预训练模型:作为大脑的 LLM,作为耳朵的语音编码器,以及作为嘴巴的声码器。

2025-07-09 20:05:29 98

原创 【读论文】GLM-4.1V-Thinking 解读:用强化学习解锁 VLM 的通用推理能力

GLM-4.1V-Thinking 不仅仅是一个强大的开源 VLM,更重要的是,它为我们展示了一套以推理为中心、以可扩展 RL 为核心驱动力的 VLM 训练框架。通过知识密集型的预训练对齐思维模式的 SFT,以及创新的带课程采样的强化学习 (RLCS),GLM-4.1V-Thinking 成功地将其强大的基础能力,系统性地、高效地转化为了在多个复杂领域的卓越推理能力。

2025-07-08 23:01:40 158

原创 【读代码】GLM-4.1V-Thinking:开源多模态推理模型的创新实践

GLM-4.1V-Thinking是清华大学KEG实验室推出的新一代开源视觉语言模型,基于GLM-4-9B-0414基础模型构建。该项目通过引入"思维范式"和强化学习课程采样(RLCS)技术,显著提升了模型在复杂任务中的推理能力。64k超长上下文支持:可处理长达64k token的输入序列4K分辨率处理:支持任意纵横比的图像输入多模态推理强化:在数学推理、长文本理解等18项基准测试中超越72B参数模型中英双语支持:原生支持中文和英文的混合输入。

2025-07-08 22:33:50 102

原创 【读代码】深度解析TEN VAD:实时语音活动检测的高性能开源解决方案

TEN VAD是TEN生态系统中的核心组件,专为企业级实时语音交互场景设计。作为轻量级、低延迟的语音活动检测系统,其在检测精度(F1=0.91)和计算效率(RTF=0.0086)上均超越行业标杆WebRTC VAD和Silero VAD,特别适合需要快速响应的人机对话系统。

2025-07-07 21:23:26 67

原创 【实战】如何训练一个客服语音对话场景VAD模型

VAD本质上是一个二分类任务(语音/非语音),因此需要对音频进行逐帧(或逐时间段)的标注。标注工具:使用Audacity, Praat, Label-Studio等音频标注工具。标注粒度:通常以毫秒为单位,标注出每个语音片段的起始和结束时间。明确标注规则核心问题:什么是“语音”?严格定义:只标注包含明确词义的人类说话声。宽松定义:除了说话声,还包括笑声、哭声、叹息、咳嗽等人类发出的声音。选择哪种定义取决于下游任务的需求。例如,如果下游需要分析客户情绪,那么哭声和笑声也应该被标注为“语音”。

2025-07-06 22:48:57 44

原创 【读代码】深度解析Kyutai Labs Delayed Streams Modeling项目

在实时语音交互需求爆炸式增长的今天,Kyutai Labs推出的**Delayed Streams Modeling(延迟流建模)**框架以其创新的流式处理能力和多模态支持,为语音技术领域注入了全新活力。项目地址:https://github.com/kyutai-labs/delayed-streams-modeling。项目为核心,深度解析其技术架构、应用场景及创新价值,带您领略这项突破性技术如何重塑语音交互的未来。其中 (\Delta) 为可控延迟窗口,(h) 为隐藏状态。导出Markdown笔记。

2025-07-05 14:01:57 878

原创 【RAG文档解析优化】复杂Excel表格处理

—从识别表格边界,到恢复内部结构,再到生成RAG友好的表示——我们可以系统性地将这些“带刺的玫瑰”驯服。虽然代码实现可能充满细节和挑战,但其带来的回报是巨大的:一个更干净、更可靠的知识库,以及一个能真正理解和利用表格数据、从而提供精准答案的RAG系统。为了人类阅读的便利性,制作者常常会使用合并单元格来创建标题、使用多层表头来组织复杂的列、在同一个Sheet页中放置多个相关的表格,并添加大量的注释说明。它们就像一朵朵“带刺的玫瑰”,虽然蕴含着宝贵的数据,但如果直接用传统的方法(如。

2025-07-04 23:59:51 84

原创 【agent实战】用Agentic方案构建智能附件处理聊天服务

用户上传和。用户提问: “请根据总结第一季度的市场趋势,并结合的数据,找出销售额最高的三个城市。tools.py。

2025-07-03 22:45:28 576

原创 【读代码】PDF-Extract-Kit深度解析:最好用的RAG开源PDF解析工具

PDF-Extract-Kit是由OpenDataLab推出的开源工具包,专注于解决复杂PDF文档的内容解析难题。该项目集成了当前最先进的文档解析模型,通过模块化设计实现灵活的功能组合,支持布局检测、公式识别、表格解析等多项核心功能。多模态解析能力:支持文字、公式、表格、图像等元素的联合解析工业级鲁棒性:在模糊扫描件、水印文档等复杂场景下仍保持高准确率开箱即用体验:提供预训练模型权重和完整配置系统可扩展架构:通过配置文件即可实现新模型的快速集成。

2025-07-02 21:57:44 353

原创 【Agent实战】用“前置编码器+LLM”复刻ChatGPT附件功能

基于“前置编码器 + LLM”的朴素方案,虽然在技术实现上不如原生多模态模型那样“浑然一体”,但它为广大开发者提供了一条高度实用、灵活且成本可控的路径来构建强大的多模态聊天应用。这个方案的精髓在于专业分工:让专业的工具做专业的事,最后让强大的文本LLM在高质量的文本上下文上进行它最擅长的推理和生成。通过不断优化每一个前置编码器模块和与LLM的交互方式,我们完全可以打造出在许多场景下与巨头们的产品相媲美的服务。

2025-07-02 21:39:36 202

原创 【读代码】百度开源大模型:ERNIE项目解析

ERNIE(Enhanced Representation through kNowledge IntEgration)是百度基于PaddlePaddle深度学习框架开发的多模态预训练模型体系。最新发布的ERNIE 4.5系列包含10个不同变体,涵盖从300B参数的巨型MoE模型到0.3B的轻量级模型,形成完整的多模态处理能力矩阵。

2025-07-01 21:32:24 852

原创 【读代码】TradingAgents:基于多智能体LLM的金融交易框架深度解析

TradingAgents是由Tauric Research团队开源的创新型金融交易框架,其核心思想是通过多智能体协作系统模拟专业交易机构的决策流程。项目采用模块化设计,整合了LLM、实时数据分析、风险控制等组件,实现了从市场分析到交易执行的完整闭环。

2025-06-30 21:15:56 441

原创 RAG的“排毒”指南:告别非知识内容的干扰,实现精准问答

用户的查询自然会和知识库中已有的相似问题在语义上非常接近,导致检索引擎被“误导”,优先召回了这些“问题”块,而忽略了真正包含答案的“知识”块。,我们可以有效地为RAG系统“排毒”,确保送入LLM的是经过提纯的、高质量的知识上下文。,因为它接收到的上下文本身就是一个问题,而非包含答案的知识。(图示:在检索器返回Top-K文档块后,后置判断模块逐个评估这些块,过滤掉非知识性内容,再将纯净的上下文送给LLM)要解决这个问题,我们需要让RAG系统具备甄别“知识性内容”和“非知识性内容”的能力。

2025-06-29 23:00:24 74

原创 大模型Chat与Agent产品上线后满意度评估方案

它需要我们结合定量与定性、自动与人工、显性与隐性的多种方法,从用户交互的每一个环节捕捉信号,洞察用户真实的需求和痛点。可以将上述多种显性和隐性指标,以及人工标注结果,通过加权平均或更复杂的机器学习模型(如训练一个回归模型来预测用户满意度分数),构建一个综合的用户满意度指数。然而,LLM输出的非确定性、多样性以及用户需求的复杂性,使得量化和理解用户满意度并非易事。这些指标不直接来自用户,而是通过分析LLM自身的输出特性来间接推断可能的用户感受。最直接了解用户满意度的方式,就是倾听他们主动提供的反馈。

2025-06-26 21:51:21 98

原创 深度研究代理框架DeepResearchAgent技术解析

"""财务报告分析"""])

2025-06-25 10:37:55 195

原创 Text-to-SQL LLM Agent如何处理多表关联查询

在真实世界的数据库中,数据往往被规范化地存储在多个相互关联的表中,以减少冗余并保持数据一致性。例如,一个电商数据库可能包含、、、等。当用户提出这样的问题时,就必然涉及到多表关联:这些查询需要Agent不仅理解每个表的内容,还要理解它们之间是如何通过主键(Primary Key, PK)和外键(Foreign Key, FK)联系起来的,并能生成正确的子句。这无疑是Text-to-SQL任务中最具挑战性的部分之一,堪称该领域的“珠穆朗玛峰”。用户提问时,通常不会明确指出需要关联哪些表,或者使用哪些列进行关联。

2025-06-24 21:40:22 161

原创 【llm实战】Python打造BGE模型微调服务实战指南

对于BGE这类主要用于检索和语义匹配的模型,是非常常用且有效的损失函数。它利用批内负采样。

2025-06-23 20:46:07 209

原创 【读代码】谷歌Agent-to-Agent (A2A) 协作框架深度解析

1.1 核心组件拓扑典型的三层通信架构,包含Agent节点、消息路由层、持久化存储层。

2025-06-22 22:32:22 41

原创 LangChain赋能RAG:从构建到评估优化的一体化实战指南

使用LangChain构建RAG应用只是第一步。更重要的是建立一套科学的评估体系,通过数据驱动的方式,不断发现问题、分析原因并迭代优化。这个过程可能涉及对数据处理、嵌入模型、检索策略、Prompt工程、LLM选型等多个环节的调整。核心 takeaway从简单开始:先用LangChain搭建一个基础RAG流程。构建高质量评估集:这是所有评估和优化的基础。分层评估:分别评估检索器和端到端效果,有助于定位瓶颈。关注关键指标:如上下文相关性/召回率、答案忠实度、答案相关性。善用工具。

2025-06-22 19:24:20 133

原创 【RAG优化】深度解析开源项目MinerU:从PDF解析到多模态理解的工业级解决方案

(GitHub: opendatalab/MinerU)是由OpenDataLab团队开发的开源文档解析工具,其核心价值在于将复杂的PDF文档转化为结构化数据。项目始于大模型预训练数据清洗需求,现已成为支持多模态文档理解的工业级解决方案。MinerU通过持续的技术迭代,正在重新定义文档智能处理的行业标准。其开箱即用的特性(支持Docker/K8s部署)和灵活的可扩展接口(插件式开发),使其成为构建文档理解Pipeline的理想基座。通过对比学习对齐文本/公式/图像的嵌入空间。

2025-06-21 16:03:16 589

原创 【读代码】深入解析Ragas:RAG应用效果评估最好的工具

Ragas是由Exploding Gradients团队开发的专业LLM应用评估框架,通过自动化测试和量化指标帮助开发者构建可靠的AI系统。# 典型架构模块 ├── metrics # 50+评估指标实现 ├── testset # 测试集生成系统 ├── embeddings # 多模态嵌入支持 ├── integrations # 主流框架集成 ├── optimizers # 遗传算法优化器 └── experimental # 前沿功能实验区。

2025-06-21 15:43:35 208

原创 RAG应用效果评估框架与优化指南

例如,追求极致的评估质量可能需要大量人工标注和昂贵的LLM调用,耗时且成本高。因此,选择合适的评估策略和指标,需要在这些因素间找到平衡点。通过采用分层评估框架,结合自动化与人工评估手段,并关注一套覆盖检索和生成质量的多维度指标,我们可以有效地量化RAG系统的表现,识别瓶颈,指导优化。:将自动化评估与周期性的人工评估相结合。为了更清晰地定位问题,可以将RAG评估分为两个层面:组件级评估和端到端评估。RAG系统的优化不是一次性的任务,而是一个持续的过程。高质量的评估数据集是进行有效RAG评估的前提。

2025-06-20 17:15:57 446

原创 【读代码】DeepEyes:基于强化学习的“视觉思考”智能体训练框架深度解析

DeepEyes是由Visual-Agent团队开源的创新型AI项目,其核心目标是通过端到端的强化学习(RL)训练,赋予大语言模型"用图像思考"的能力。项目基于VeRL框架构建,支持Qwen-VL系列视觉语言模型(7B/32B),在视觉定位、幻觉抑制和复杂数学问题解决等场景表现出色。核心突破无需监督微调,直接通过RL信号学习多模态推理能力训练过程中涌现出图像缩放、区域对比等自主思考模式在4096x4096高分辨率基准测试中准确率提升32%支持多工具动态调用,实现视觉搜索与验证的闭环。

2025-06-20 08:50:09 281

原创 【读代码】RAG文档解析工具Unstructured

Unstructured-IO/unstructured是一个开源的Python库,致力于将非结构化文档(PDF、HTML、Word等)转换为可用于机器学习的结构化数据。项目由Unstructured Technologies团队维护,截至2023年已获得GitHub 5.8K星标,成为文档预处理领域的热门工具。

2025-06-19 16:08:06 332

原创 【读论文】最新推理模型MiniMax-M1超越DeepSeek R1?

大型语言模型(LLM)在处理复杂推理任务方面取得了令人瞩目的成就。通过扩展推理长度 (Chain-of-Thought, CoT),模型能够进行更深入、更细致的思考,从而在奥林匹克数学竞赛、复杂代码生成等高难度任务上不断突破。这一趋势的核心在于测试时计算 (Test-Time Compute)的新维度:投入更多的计算资源(即生成更长的思考链),模型的性能就能持续提升。然而,传统的 Transformer 架构,其核心的Softmax 注意力机制具有二次方计算复杂度,这使得扩展推理长度面临着巨大的计算瓶颈。

2025-06-19 16:02:21 157

原创 【读论文】DeepEyes 复刻openai o3的看图思考能力

状态 (State,s_t: 包含了到当前步骤t为止的所有文本 Token 序列X_<t和所有图像观察序列I_<t(包括原始图像和所有裁剪图像)。动作 (Action,a_t: 模型在状态s_t下生成的下一个 Token。这个 Token 可以是普通文本 Token,也可以是工具调用指令 Token。策略 (Policy,π_θ: 即 VLM 自身,根据当前状态s_t输出下一个动作(Token)的概率分布。奖励 (Reward,R(τ): 在一个完整的 iMCoT 轨迹τ。

2025-06-17 20:42:31 125

原创 【读代码】字节开源Deep Research框架DeerFlow

【代码】【读代码】字节开源Deep Research框架DeerFlow。

2025-06-17 18:00:00 84

专栏附带练习题与参考答案-零基础上手Python数据分析

专栏见https://blog.csdn.net/kakazhui/category_12913949.html,帮助数据分析初学者迅速入门并上手

2025-05-12

谷歌大模型prompt编写指南

内容概要:本文详细介绍了提示工程的核心概念和技术,旨在帮助读者理解和掌握如何编写高质量的提示以引导大型语言模型(LLM)生成准确、有用的输出。文章首先解释了提示工程的基础知识,包括LLM的工作原理、输出配置(如温度、top-K、top-P)以及如何选择合适的模型配置。接着,文章深入探讨了多种提示技巧,如零样本提示、少量样本提示、系统提示、情境提示、角色提示、后退提示、思路链(CoT)、自洽性提示和思路之树(ToT)。此外,还介绍了如何通过ReAct方法结合推理和行动来解决复杂任务。最后,文章讨论了自动提示工程的应用,并分享了提示工程的最佳实践,如记录提示尝试、使用变量、控制输出格式等。 适合人群:对大型语言模型有一定了解并希望深入学习如何编写高效提示的开发者、研究人员和工程师。 使用场景及目标:①帮助用户理解提示工程的基础知识和核心技术;②指导用户根据具体应用场景选择合适的提示技巧;③提高用户编写高质量提示的能力,从而优化LLM的输出质量。 其他说明:本文提供了大量的实例和代码片段,便于读者实践和理解。同时,文章强调了提示工程的迭代性质,鼓励读者不断尝试和优化提示,以适应不同的任务需求和模型版本。此外,文中还提及了多个参考资料和工具,如Google Cloud的Vertex AI Studio,以支持读者进一步探索和应用提示工程技术。

2025-05-07

基于python从0到1实现一个plan-execute方案的Agent(快速学习原理和实现)

基于python从0到1实现一个plan-execute方案的Agent(快速学习原理和实现)

2025-04-25

基于python从0到1实现reAct Agent

基于python从0到1实现reAct Agent

2025-04-25

算法面试2025中国移动算法面试编程题目及参考答案:1)服务器集群通信统计,2)整数1出现次数计算

内容概要:本文档提供了两道编程题目及其要求。第一题是关于服务器集群通信问题,第二题是计算从1到n的所有整数中数字1出现的总次数。

2025-04-16

pyhton脚本如何轻松实现html转换pdf,轻松生成分析报告

pyhton脚本如何轻松实现html转换pdf,轻松生成分析报告

2025-04-13

如何基于大模型(DeepSeek)实现一个多智能体的对话系统的,python脚本

如何基于大模型(DeepSeek)实现一个多智能体的对话系统的,python脚本

2025-02-24

python脚本:利用openai接口模拟相声对话,AI郭老师和于老师已上线(DeepSeek接口也通用)

AI郭: 哎呀,说起看电影啊,我可太有发言权了!前两天我去电影院,那叫一个热闹!你知道我买票的时候发生啥事儿了吗?那售票员问我:“先生,您要买什么票?”我说:“我要看《流浪地球》。”结果您猜怎么着?那售票员一脸懵,说:“先生,我们这儿只有《流浪月球》。”我一听,乐了,说:“哟,这地球都流浪到月球去了?” AI于: 啊?还有这事儿?《流浪月球》?那地球去哪儿了? AI郭: 可不是嘛!我琢磨着,这地球是不是嫌月球太孤单,干脆陪它一起流浪去了?结果您猜怎么着?那售票员一脸严肃地说:“先生,您误会了,这是《流浪月球》,讲的是月球离家出走的故事。”我一听,差点儿笑喷了,说:“哎哟,这月球也学会叛逆了?地球它妈知道吗?” AI于: 哎呦喂!这月球还学会离家出走了?那地球不得急死啊! AI郭: 可不是嘛!我寻思着,这地球要是知道了,不得满宇宙找孩子去?结果您猜怎么着?那售票员还一本正经地跟我解释:“先生,您别担心,月球离家出走是因为地球太唠叨了,整天念叨‘你咋还不转呢?’‘你咋还不亮呢?’月球受不了了,干脆一走了之。”我一听,乐得直拍大腿,说:“哎哟,这地球还是个碎嘴子呢!”

2025-02-20

RAG优化:向量模型(以BGE模型为例)蒸馏,量化,到处onnx模型

RAG优化:向量模型(以BGE模型为例)蒸馏,量化,到处onnx模型

2025-02-18

python语言入门项目案例(包含代码),学生成绩统计,帮助小白入门

python语言入门项目案例(包含代码),学生成绩统计,帮助小白入门

2025-02-17

本资源是学生成绩统计案例,涵盖了C语言入门阶段的核心知识点 通过代码实现、详细分析和教学扩展,可以帮助初学者逐步掌握C语言编程的基础

本资源是学生成绩统计案例,涵盖了C语言入门阶段的核心知识点 通过代码实现、详细分析和教学扩展,可以帮助初学者逐步掌握C语言编程的基础

2025-02-17

DeepSeek模型本地部署指南:Windows与macOS环境下DeepSeek R1模型的快速安装与使用

内容概要:本文档详细介绍了DeepSeek模型在不同操作系统下的本地安装与配置方法

2025-02-11

包含DeepSeekR1的论文以及清华版的入门进阶文档

适合各种技术小白,快速学会并使用 手下DeepSeek文档,你可以快速学会使用技巧 阅读DeepSeek R1的论文,你可以迅速理解为啥R1能大火特火,看看他们的核心技术

2025-02-11

python脚本利用deepseek一键创作抖音文案(结合实时更新的百度热搜)

pyhton脚本一键制作抖音文案,逻辑为抓取百度热搜--->大模型过滤出娱乐健康类热搜--->生成抖音短视频文案,适合想利用抖音和deepseek起号轻松打工的各位家人

2025-02-10

印尼语文本预料,维基百科,文本30k

印尼语文本预料,维基百科,文本30k

2024-10-23

微软平台的openai接口使用指南

微软平台的openai接口使用指南

2024-10-19

如何成为一个语音识别算法工程师

如何成为一个语音识别算法工程师

2024-10-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除