在前面的文章中,我们介绍了 LLM 的内部结构和工作原理,相信你已经对这些“庞然大物”有了一定的了解。那么,这些拥有惊人能力的 LLM 究竟是如何训练出来的呢?今天,我们就来一探究竟,看看 LLM 的“炼成之路”。
一、训练 LLM 的基本流程
训练 LLM 的过程可以类比于教一个孩子学习语言:
- 准备教材 (数据准备): 首先,我们需要准备大量的文本数据作为 LLM 的“教材”。
- 搭建模型 (模型构建): 然后,我们需要搭建一个 LLM 模型,这相当于孩子的“大脑”。
- 教授知识 (模型训练): 接下来,我们将“教材”不断地“喂”给模型,让它学习语言的规律和模式,这个过程就是模型训练。
- 考试测试 (模型评估): 最后,我们需要测试模型的学习效果,看看它是否掌握了我们教给它的知识。
整个流程可以概括为:数据准备 -> 模型构建 -> 模型训练 -> 模型评估。
二、数据准备:LLM 的“精神食粮”
数据是 LLM 训练的关键,数据的质量和规模直接决定了模型的性能。
1. 数据来源
LLM 的训练数据通常来自于各种公开的文本数据,例如:
- 网页数据: 例如 Common Crawl,这是一个