问题分析
- 用户流式输入,同步KV Cache
- 轮次切换,context动态新增如何同步进行KV Cache
整体方案
随着用户输入新的信息,context会动态增长。为了提高LLM的响应速度和效率,我们通常会使用KV Cache来存储context的向量表示,以便快速检索相关信息。当context动态新增时,我们需要同步更新KV Cache,以下是几种常见的方法:
1. 实时计算:
- 原理: 每当context新增内容时,立即计算新增内容的向量表示,并将其添加到KV Cache中。
- 优点: 保证KV Cache始终与最新的context同步,检索结果最准确。
- 缺点: 计算量较大,尤其是在context增长迅速的情况下,可能会影响响应速度。
- 适用场景: 对实时性要求较高,且新增内容频率不高的场景。
2. 定期批量计算:
- 原理: 设置一个时间间隔或新增内容数量阈值,当达到条件时,批量计算新增内容的向量表示,并将其添加到KV Cache中。
- 优点: 可以降低计算频率,减少对响应速度的影响。
- 缺点: KV Cache与最新的context之间存在一定的延迟,检索结果可能不够准确。
- 适用场景: 对实时性要求不高,且新增内容频率较高的场景。
3. 异步计算:
- 原理: 将新增内容的向量计算任务放入一个异步队列中,由后台线程进行处理,并将结果添加到KV Cache中。
- 优点: 可以避免向量计算阻塞主线程,提高响应速度。
- 缺点: KV Cache更新存在一定的延迟,需要处理好数据一致性问题。
- 适用场景: 对响应速度要求较高,且新增内容频率较高的场景。
4. 增量计算:
- 原理: 利用一些增量式的向量计算方法,例如Faiss的
add_with_ids
,只计算新增内容的向量表示,并将其添加到KV Cache中,避免重复计算已有的内容。 - 优点: 可以有效减少计算量,提高效率。
- 缺点: 需要选择合适的增量式向量计算方法,并对KV Cache进行相应的管理。
- 适用场景: context增长迅速,且需要高效更新KV Cache的场景。
以下是一个使用Python和Sentence-BERT实现实时更新KV Cache的示例,适用于对实时性要求较高的场景:
from sentence_transformers import SentenceTransformer
from annoy import AnnoyIndex
class RealtimeKVCache:
def __init__(self, model_name='all-mpnet-base-v2', dim=768, metric='angular', n_trees=10):
self.model = SentenceTransformer(<