【llm对话系统】大模型 Llama 源码分析之 LoRA 微调

1. 引言

微调 (Fine-tuning) 是将预训练大模型 (LLM) 应用于下游任务的常用方法。然而,直接微调大模型的所有参数通常需要大量的计算资源和内存。LoRA (Low-Rank Adaptation) 是一种高效的微调方法,它通过引入少量可训练参数,固定预训练模型的权重,从而在保持性能的同时大大减少了计算开销。

本文将深入分析 LoRA 的原理,并结合 Llama 源码解读其实现逻辑,最后探讨 LoRA 的优势。

2. LoRA 原理

LoRA 的核心思想是:预训练模型中已经包含了大量的低秩 (low-rank) 特征,微调时只需要对这些低秩特征进行微调即可。

具体来说,LoRA 假设权重更新矩阵 ΔW 也是低秩的。对于一个预训练的权重矩阵 W ∈ R^(d×k),LoRA 将其更新表示为:

W' = W + ΔW = W + BA

其中:

  • W 是预训练的权重矩阵。
  • ΔW 是权重更新矩阵。
  • B ∈ R^(d×r)A ∈ R^(r×k) 是两个低秩矩阵,r
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值