Agent框架LangGraph:实现一个简单的Plan-and-Execute Agent

在这里插入图片描述

写在前面

大型语言模型(LLM)作为 Agent 的“大脑”时,展现出了强大的潜力。然而,面对需要长远规划和多步骤推理的复杂任务,简单的“想到哪做到哪”(如典型的 ReAct 风格)的 Agent 往往会遇到困难。它们可能在中间步骤迷失方向,或者无法预见后续步骤的需求,导致任务失败或效率低下。

为了克服这一局限,Plan-and-Execute(规划与执行) 成为了一种备受关注的 Agent 设计模式。这种模式的核心思想是:先思考,再行动,边行动,边调整。 Agent 首先会根据用户目标制定一个多步骤的计划,然后逐一执行计划中的任务,并在执行过程中根据实际结果反思和修正后续计划。这种模式借鉴了人类解决复杂问题时常用的策略,也受到了 Plan-and-Solve 论文和 Baby-AGI 等项目的启发。

LangGraph 是 LangChain 生态中用于构建可循环、有状态、多 Agent 应用的强大库。它基于图(Graph)的思想,允许开发者定义 Agent 的状态、节点(处理单元)和边(状态转换逻辑),非常适合实现 Plan-and-Execute 这种包含规划、执行、反思循环的复杂 Agent 架构。

本篇博客将基于 LangChain 官方提供的 Plan-and-Execute 教程,深入剖析如何使用 Python 和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值