深度研究代理框架DeepResearchAgent技术解析

一、项目概览

DeepResearchAgent是由SkyworkAI团队开发的分层多智能体框架,其设计目标是通过智能体协作解决复杂研究任务和通用问题。该框架在GAIA基准测试中取得SOTA成绩(2025年5月),支持OpenAI、Anthropic、Google等主流LLM,并提供本地模型集成方案。

架构设计

采用双层架构模式:

├── Top-Level Planning Agent       # 顶层规划代理
│   ├── 任务分解
│   ├── 智能体调度
│   └── 流程协调
└── Specialized Agents            # 专用智能体
    ├── Deep Analyzer             # 深度分析器
    ├── Deep Researcher           # 深度研究员
    └── Browser Use Agent        # 浏览器控制代理

二、快速入门

环境配置

# 使用conda创建环境
conda create -n dra python=3.11
conda activate dra

# 安装依赖
make install  # 使用poetry安装
# 或
make install-requirements  # 使用requirements.txt

# 浏览器驱动安装
playwright install chromium --with-deps

配置文件示例(.env)

OPENAI_API_KEY="sk-xxx"  # OpenAI密钥
GOOGLE_API_KEY="gcp-xxx" # Google密钥
PYTHONWARNINGS=ignore    # 禁用Python警告

启动本地模型服务

# 使用vLLM启动Qwen服务
CUDA_VISIBLE_DEVICES=0,1 python -m vllm.entrypoints.openai.api_server \
  --model /path/Qwen3-32B \
  --served-model-name Qwen \
  --port 8000 \
  --tensor_parallel_size 2

三、应用场景

场景1:学术研究自动化

# examples/run_example.py
from agent.deep_researcher import DeepResearcher

researcher = DeepResearcher(llm="gpt-4.1")
report = await researcher.research(
    topic="大语言模型安全对齐技术",
    depth=2,  # 研究深度级别
    sources=["arxiv", "google scholar"]
)
print(report.to_markdown())

该场景实现:

  1. 自动检索近3年顶会论文
  2. 提取关键创新点生成对比表格
  3. 识别技术趋势并绘制时间线

场景2:GAIA基准测试

# examples/run_gaia.py
from evaluation.gaia_scorer import GAIAEvaluator

evaluator = GAIAEvaluator(
    dataset_path="data/GAIA",
    agent_config="configs/gaia.toml"
)
results = evaluator.run_benchmark(level="L3")
print(f"准确率:{results.accuracy}%")

测试结果包含:

  • 多模态数据处理能力
  • 复杂推理链准确率
  • 实时信息检索效果

四、核心设计与实现

1. 异步任务引擎

# src/base/async_multistep_agent.py
class AsyncController:
    async def dispatch(self, task):
        """任务分发逻辑"""
        workers = [self._create_worker(t) for t in decompose(task)]
        return await asyncio.gather(*workers)

    def _create_worker(self, subtask):
        match subtask.type:
            case "research": return DeepResearcher(**subtask.params)
            case "analysis": return DeepAnalyzer(**subtask.params)
            case "browse": return BrowserAgent(**subtask.params)

2. 安全执行沙箱

# tools/python_interpreter.py
class SandboxedExecutor:
    __allowed_modules = {"math", "numpy", "datetime"}  # 白名单
    __restricted_builtins = {"open", "__import__"}     # 禁用函数

    def execute(self, code):
        with ResourceLimiter(max_memory="512MB", timeout=30):
            return restricted_exec(code, globals_)

3. 模型适配层

# models/litellm.py
class UnifiedLLM:
    def __init__(self, provider):
        self.adapter = self._get_adapter(provider)

    def _get_adapter(self, provider):
        return {
            "openai": OpenAIModel,
            "anthropic": ClaudeModel,
            "google": GeminiModel,
            "qwen": QwenModel
        }[provider]

五、关键创新点

  1. 动态任务分解算法
def decompose(task):
    # 基于LLM的实时任务拆分
    planner = Planner(model="gpt-4.1")
    return planner.generate_plan(task)
  1. 混合推理引擎
符号推理 → 神经网络推理 → 外部验证
      ↘ 知识图谱检索 ↙
  1. 自适应浏览器控制
# tools/auto_browser.py
async def smart_scroll(page):
    """根据页面布局智能滚动"""
    while not page.is_end:
        if page.has_pagination:
            await page.click_next()
        else:
            await page.scroll(distance="80%")

六、开发实践示例

自定义智能体开发

# src/agent/custom_agent.py
@register_agent("finance_analyzer")
class FinanceAgent(AgentBase):
    def __init__(self, llm):
        self.tools = [
            StockDataTool(),
            ReportParser(),
            RatioCalculator()
        ]

    async def analyze(self, report):
        """财务报告分析"""
        pipeline = AnalysisPipeline([
            ("extract", self.extract_key_data),
            ("calculate", self.compute_ratios),
            ("compare", self.benchmark_analysis)
        ])
        return await pipeline.execute(report)

配置管理示例

# configs/custom_config.yaml
agents:
  planner:
    model: "gemini-2.5-pro"
    temperature: 0.3
  researcher:
    max_depth: 3
    allowed_sources: ["arxiv", "ieee"]
tools:
  browser:
    headless: true
    timeout: 120
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值