RAG进阶之术:用“父子Chunk”策略破解复杂查询的“上下文迷局”

1. 引言:RAG中的复杂上下文问题与父子Chunk的方案

RAG系统的核心在于“检索”这一环。检索的质量直接决定了提供给LLM的上下文质量,从而决定了最终答案的质量。传统分块策略面临的困境,本质上是**检索精度(Precision)上下文完整性(Completeness/Recall of Context)**之间的矛盾。

  • 高精度检索需要:分块小而精,每个块只围绕一个核心语义点,这样查询向量才能与目标块的向量高度相似。
  • 高完整性上下文需要:分块大而全,包含足够的背景信息、前后文联系,让LLM能够理解一个信息点在更大图景中的位置。

父子Chunk策略通过一种巧妙的“解耦”思路,优雅地解决了这个矛盾。它将用于检索的单元用于生成的单元分离开来:

  • 用“子Chunk”(小块)来进行高精度检索
  • 用“父Chunk”(大块)来提供丰富的上下文

通过这种方式,我们既能利用小块的精准定位能力,又能享受大块的完整上下文,从而有效破解“上下文迷局”。

2. 问题分析:一个生动的“上下文”困境案例

2.1 场景设定:基于公司年度报告的问答机器人

假设我们有一个100页的PDF年度报告,其中有一段关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值