2023 MMUGL-基于 UMLS 知识图谱的多模态图学习Multi-modal Graph Learning over UMLS Knowledge Graphs
临床医生越来越希望通过机器学习来了解患者的进展情况。我们提出了一种名为多模态 UMLS 图学习 (MMUGL) 的新方法,用于在基于统一医学语言系统的知识图谱上使用图神经网络学习医学概念的有意义表示。这些概念表示被聚合以表示患者就诊,然后输入到序列模型中,以患者多次医院就诊的粒度执行预测。我们通过结合先前的医学知识和考虑多种模式来提高绩效。我们将我们的方法与在 MIMIC-III 数据集上为学习不同粒度的表示而提出的现有架构进行了比较,并表明我们的方法优于这些方法。结果证明了基于先前医学知识的多模态医学概念
原创
2024-11-16 14:48:45 ·
1527 阅读 ·
0 评论