深入浅出讲解梯度消失和梯度爆炸问题(原因、解决方法)

  • 本文收录于《深入浅出讲解自然语言处理》专栏,此专栏聚焦于自然语言处理领域的各大经典算法,将持续更新,欢迎大家订阅!
  • ​个人主页:有梦想的程序星空
  • ​个人介绍:小编是人工智能领域硕士,全栈工程师,深耕Flask后端开发、数据挖掘、NLP、Android开发、自动化等领域,有较丰富的软件系统、人工智能算法服务的研究和开发经验。
  • ​如果文章对你有帮助,欢迎关注点赞收藏订阅。

梯度消失和梯度爆炸产生的原因:

        传统的神经网络通常是基于BP算法优化权重参数的,即通过损失函数计算的误差通过梯度反向传播的方式对神经网络中的权重进行更新,其中用到的是连乘形式的链式法则。

        梯度消失:产生的原因基本上是网络太深或是采用了不恰当的损失函数,如sigmoid函数、tanh函数等。由于sigmoid函数的导数最大值是0.25,因而通过链式法则,导致靠近输入层的权重更新缓慢甚至停滞。

        梯度爆炸:产生的原因一般是深层网络或是权重初始化过大的情况,伴随着传统神经网络的链式法则,梯度会越来越大,训练过程中,很容易使得权重的值也越来越大导致溢出等情况。

激活函数的选择:某些激活函数的特性是导致梯度消失或梯度爆炸的重要因素之一。如 Sigmoid 函数,其导数在输入值较大或较小时趋近于零。在多层神经网络中,当反向传播经过多个使用 Sigmoid 函数的隐藏层时,梯度会随着层数的增加而不断被压缩,最终导致梯度消失。对于 Tanh 函数,虽然它在一定程度上改善了 Sigmoid 函数的输出中心化问题,但仍然存在类似的梯度消失风险。而 ReLU 函数在正区间导数恒为 1,在一定程度上缓解了梯度消失问题,但如果网络中存在大量 “死亡 ReLU”(即输入为负时,输出恒为零且梯度也为零),也可能影响梯度的正常传播,间接导致梯度消失或出现局部更新异常的情况。

网络深度与权重初始化:随着网络深度的增加,梯度在反向传播过程中的连乘效应会被放大。如果权重初始化过大,在多层网络的反向传播中,梯度就可能会呈指数级增长,从而引发梯度爆炸;反之,如果权重初始化过小,梯度则会随着层数的增加而迅速衰减,导致梯度消失。例如,在一个深度卷积神经网络(CNN)中,如果使用不恰当的均匀分布或正态分布初始化权重,且没有考虑网络深度的影响,就很容易出现这些问题。特别是在深层的 ResNet 或 DenseNet 等复杂网络结构中,不合理的权重初始化可能会使梯度问题更加突出,严重阻碍模型的训练进程。

递归神经网络中的长序列依赖:在 RNN 中,由于其特殊的结构,对长序列数据进行处理时容易出现梯度问题。在反向传播过程中,每一步的梯度都需要乘以当前时间步的权重矩阵,随着序列长度的增加,这种连乘会导致梯度要么逐渐消失,使得网络难以学习到长距离的依赖关系;要么迅速增长,引发梯度爆炸,使模型训练失控。例如,在处理自然语言处理中的长文本序列时,如一篇长篇小说的文本分类任务,传统的 RNN 由于梯度问题很难捕捉到文本开头和结尾之间的语义关联,导致模型对长序列数据的理解和处理能力受限。

解决方法:

        由于梯度消失和梯度爆炸都是由于网络太深或是权重更新过大或是过小,并且伴随着链式乘法法则导致的,主要有以下几种解决方法:

  • 预训练+微调
  • 换成Relu、LeakyRelu等非饱和的激活函数
  • 梯度剪切、梯度正则
  • 使用Batch Normalization
  • 使用LSTM或是GRU等
  • 使用残差结构
  • 神经网络权重初始化(Xavier, He初始化等)

选择合适的激活函数:为了缓解梯度消失问题,可以选择一些导数在较大范围内不为零的激活函数。如 ReLU 函数及其变体(Leaky ReLU、Parametric ReLU 等)。ReLU 函数在正区间的导数恒为 1,能够有效地避免梯度消失,加快模型的训练速度。Leaky ReLU 则在负区间也有一个较小的非零导数,进一步改善了 ReLU 函数可能出现的 “死亡 ReLU” 问题。在一些实验中,使用 ReLU 函数替代传统的 Sigmoid 函数后,深度神经网络的训练速度和准确率都有了显著的提高。例如,在一个用于图像分类的 CNN 模型中,将隐藏层的激活函数从 Sigmoid 改为 ReLU 后,模型在相同的训练时间内,准确率提升了 10% 以上,并且训练过程更加稳定,不易出现梯度消失导致的训练停滞现象。

优化权重初始化方法:合理的权重初始化对于避免梯度消失和梯度爆炸至关 0 重要。例如,Xavier 初始化方法根据网络的输入和输出神经元数量来确定权重的初始化范围,使得在反向传播过程中,梯度能够保持相对稳定的传播。对于具有线性激活函数的层,它能够有效地平衡梯度的大小,防止梯度过大或过小。而 He 初始化则专门针对 ReLU 等激活函数进行了优化,考虑了 ReLU 函数在正区间的特性,在使用 ReLU 激活函数的网络中表现出色。在实际应用中,通过采用合适的初始化方法,可以大大降低梯度问题出现的概率,提高模型的训练效率。例如,在一个多层 RNN 模型中,使用 He 初始化权重后,梯度爆炸的问题得到了明显的缓解,模型能够更加稳定地学习到长序列数据中的依赖关系,训练误差逐渐减小并收敛到一个合理的范围。

采用梯度裁剪技术:当出现梯度爆炸时,可以使用梯度裁剪(Gradient Clipping)技术来限制梯度的大小。一种常见的方法是设置一个阈值,当计算得到的梯度范数超过该阈值时,将梯度进行缩放,使其范数等于阈值。例如,在训练一个深层的神经网络时,如果发现梯度范数过大,可能会导致模型参数更新过于剧烈,此时可以将梯度范数限制在一个合理的范围内,如 1.0 或 5.0。这样可以避免模型因为梯度爆炸而无法收敛,使训练过程更加稳定。在一些自然语言处理任务中,如文本生成模型的训练,采用梯度裁剪技术后,模型的训练过程变得更加可控,不再出现因梯度爆炸导致的生成结果混乱或无法训练的情况,能够生成更加合理和连贯的文本。

使用残差网络(ResNet)或门控循环单元(GRU)/ 长短期记忆网络(LSTM):残差网络通过引入残差连接,使得梯度能够更容易地在网络中传播,避免了梯度在深层网络中的过度衰减。在图像识别领域,ResNet 的应用极大地提高了深度神经网络的训练效果和性能,能够构建非常深的网络结构而不会出现严重的梯度消失问题。对于递归神经网络,GRU 和 LSTM 则通过特殊的门控机制来控制信息的传递和梯度的更新,有效地缓解了长序列数据处理中的梯度消失和梯度爆炸问题。例如,在语音识别任务中,使用 LSTM 网络能够更好地处理语音信号中的长时依赖关系,相比传统的 RNN,其训练效果和识别准确率都有了显著的提升,能够更加准确地识别不同的语音内容,尤其是在处理长句或连续语音流时表现出色。 

关注微信公众号【有梦想的程序星空】,了解软件系统和人工智能算法领域的前沿知识,让我们一起学习、一起进步吧!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有梦想的程序星空

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值