物流行业分析1 --浅析商品 | 用户反馈数据

这篇博客深入探讨物流行业的商品和用户反馈数据,通过数据清洗、探索及可视化,揭示配送服务问题、潜在销售区域及商品质量问题。分析涉及月份、销售区域和货品维度,关注异常值处理、拒货率与返修率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

物流行业分析1 --浅析商品 | 用户反馈数据

数据来源说明

数据来源:某网络公开数据 [ 某企业销售的6种商品所对应的送货及用户反馈数据 ] ,如有侵权,请联删除,谢谢!

导入包

import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt 
plt.rcParams['font.sans-serif'] = 'SimHei' ## 设置中文显示

项目背景

解决问题:

  1、配送服务是否存在问题
  2、是否存在尚有潜力的销售区域
  3、商品是否存在质量问题

分析结论:

  1、货品4→西北,货品2→马来西亚两条线路存在较大问题,急需提升时效;
  2、货品2在华东地区还有较大市场空间,适合加大投入。同时货品2在西北配送时效长,用户拒收率高,从成本角度考虑,应该减少投入;
  3、货品1、2、4质量存在问题,建议扩大抽检范围,增大质检力度;

分析过程如下:

一、数据清洗
    ① 重复值、缺失值、格式调整
    ② 异常值处理(比如:销售金额存在等于0的,数量和销售金额的标准差都在均值的8倍以上等)
二、数据探索
    增加一项辅助列:月份
三、数据分析并可视化

数据清洗

读取数据
data = pd.read_csv('data_wuliu.csv',encoding='gbk') #读取csv文件
data.head() #查看数据前5行

data.head()

data.info()

data.info()
通过info()可以看出,包括10列数据,名字,数据量,格式等,可以得出:

1. 订单号 货品交货状态 数量都是有缺失值的,但是确实量不大,可以删除;
2. 订单行 对分析影响不大,可以考虑删除;
3. 销售金额格式不对(万元|元,逗号问题),数据类型需要转换成int|float
重复值和缺失值处理
#删除重复值
data.drop_duplicates(keep='first&
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值