电商数据分析2_专业名词和指标体系

1. 专业名词

1.1 维度和分类数据

维度是数据对象的描述性属性或特征,维度属于分类数据,不能反映数值的大小,如性别、地域、日期、渠道分类、商品名称等

1.2 度量

度量是指可以用数字大小来衡量程度且具有同等距离的字段,同时也称之为指标,度量属于定量数据。
度量可以分为角度度量和相对度量:绝对度量反映的是规模大小的指标,如销售额、访客数等。相对度量反映质量好坏,如转化率、利润率、退款率等。

1.3 粒度

粒度是维度的分析单位,如分析国内低于的销售分布,可以选择省份作为粒度,如广东省、浙江省等。要分析某省份的低于分布,可以选择城市作为粒度,如杭州市、湖州市等

1.4 量纲和单位

量纲是表征物理量的属性(类别),如时间、长度、质量等;单位是指物理量大小或数量的标准,如s、m、kg等。

1.5 数据集、事实表和维度表

数据集(Dat se)又称为资料集、数据集合或资料集合,是一种由数据组成的集合,如一天记录网店数据的表。
事实表(FaceTable)用于记录已经发生的事实的数据,一般大多数统计或者收集的数据都事实表。
维度表(Dimension Table)是观察事实表的某一个或几个角度,维度表中的数据不可以重复,如日历表,日历中不会出现任何重复的一天。

1.6 算法和函数

算法(Algorithm)是指解题方案的准确而完整的描述,运用数学方法将现实中复杂的问题维成数学问题。
函数(Function)是封装好的算法,可供用户直接调用。比如,Excel中的 Sum 函数,程序前封装好加法,用户直接调用 Sum 指令即可。

1.7 模型

模型(Model)是解决某些问题的整体方案,可分为业务模型、关系模型和算法模型。好模型是基于业务逻辑构建的可自动处理业务中间过程的整体结构,比如杜邦分析法构建的杜邦分析模型。关系模型是基于表与表的关系建立的解决方案,一般涉及跨表联查。算法模型是基于法构建的解决方案,如关联算法、回归模型等。

2. 指标体系

2.1 数据来源及统一

电商数据分析的主要流量来源如下:
(1)交易/订单数据:小到一家店铺,大到电子商务平台,都会有订单数据的产生。订单越主要记录的是订单金额、收货地址及订单状态等信息。
(2)用户行为数据:平台拥有用户在平台上全链路的行为数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值