小白科普:大语言模型 LLM 的工作原理

本文作者尼尔·齐彻曼 (Nir Zicherman) 是一位企业家,也是一位写作者。他是 Anchor 的联合创始人和 Spotify 有声读物副总裁,他有一个免费的newsletter 名叫 Z-Axis(https://www.zaxis.page/)。

本文是他针对大语言模型 LLM 的科普文章,适合无技术背景的小白。继之前学习吴恩达的 AIGC 科普课程之后,这篇文章是我近期看到的最好的针对小白的科普文,他通过三餐中菜肴的搭配原理来讲解 LLM 生成文本的过程,有趣易懂。

文章是我用机器翻译后,再进行人工润色的,如有不当请读者指出。


最近关于人工智能的所有讨论——它的影响、它引发的道德困境、采用它的利弊——我的非技术朋友之间的讨论很少涉及这些东西是如何工作的。从表面上看,这些概念似乎令人畏惧,掌握大型语言模型 (LLMs) 功能的想法似乎难以逾越。

但事实并非如此,这个原理其实任何人都可以理解。因为推动人工智能浪潮的基本原理相当简单。

多年来,在运营 Anchor、在 Spotify 领导有声读物以及撰写每周时事通讯的同时,我必须找到为非技术受众提炼复杂技术概念的方法。因此,请耐心等待,我将在没有任何技术术语或数学方程的情况下解释 LLMs 的实际工作原理。为此,我将使用一个我们都熟悉的主题:食物。与 LLM 类比,“菜肴”(dishes)是大语言模型要生成的单词,而“三餐”(meals)是大语言模型要生成的句子。让我们深入了解一下。

菜单

想象一下:您正在做一顿晚餐,您准备的食物还不够,所以我们需要在晚餐中添加一个菜。

但这说起来容易做起来难。我们选择的食物需要与晚

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值