Cursor-Agent 实战:构建端到端自动化取数工具的探索与思考
在数据驱动的时代,快速、准确地获取数据是企业决策和业务发展的基石。然而,对于许多技术团队而言,日常的取数工作往往充满了挑战,耗时耗力。
我们团队也曾深陷其中,直到开始探索 AI Agent 在这一领域的应用,特别是通过实践 Cursor-Agent,我们看到了一条从手动取数到自动化"数据大师"的进化之路。
1. 取数之痛与 LLM 的"未尽全功"?
1.1 取数需要排期?
- 需求评审前/产品功能上线后,看新功能影响面/使用量: "换货退款有大改动,看下储值支付的订单量: 拉下24年每个月包含储值支付的换货订单、GMV有多少? "
- 运营数据统计:“商业化政策有调整,需要看下最近特定交易场景的使用量:2025年在使用某功能的商家名单,但需要剔除某时间之后新签并使用某功能的商家数据”
日常取数的问题
- 想要统计数据,需要编写SQL,非技术职能有编程学习成本;
- 如果技术此前没有处理过这块业务,也得找人找文档明确需求口径,需要用到哪些库表和条件判断。 <