如何使用LangChain自定义agent的制作(2) - 让大模型帮我们生成sql


前言

前一篇文章中,我们一起写了一个agent,为了简化代码是直接传递sql的,这一篇文章我们将通过大模型根据我们的自然语言生成sql,然后再通过agent查询数据并交给大模型思考得出结果。


一、 安装依赖包

首先,我们需要安装必要的 Python 包。我们将使用 langchainSQLAlchemy 进行数据库连接和查询生成。

pip install langchain sqlalchemy

二、 设置数据库连接

我们将以 SQLite 数据库为例,展示如何设置数据库连接并创建一个示例表。

from sqlalchemy import create_engine

# 设置数据库连接
engine = create_engine('sqlite:///example.db')

# 创建一个示例表并插入一些数据
with engine.connect() as connection:
    connection.execute("""
    CREATE TABLE IF NOT EXISTS users (
        id INTEGER PRIMARY KEY,
        name TEXT,
        age INTEGER
    )
    """)
    connection.execute("""
    INSERT INTO users (name, age) VALUES
    ('Alice', 30),
    ('Bob', 25),
    ('Charlie', 35)
    """)

三、 扫描数据库结构

为了让语言模型生成正确的 SQL 查询,我们需要提供数据库的结构信息(表名和列名)。我们将使用 SQLAlchemy 的 inspect 模块来扫描数据库结构。

from sqlalchemy import inspect

def inspect_db_structure(engine):
    inspector = inspect(engine)
    structure = {
   
   }
    for table_name in inspector.get_table_names():
        columns = inspector.get_columns(table_name)
        structure[table_name] = [column['name'] for column in columns]
    return structure

db_structure = inspect_db_structure(engine)

四、 生成 SQL 查询

我们将使用 LangChain 的大语言模型(LLM)来生成 SQL 查询。为此,我们需要定义一个提示模板,并将用户的自然语言请求和数据库结构信息传递给模型。

from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI

# 初始化LangChain的LLM
llm = OpenAI(api_key="YOUR_OPENAI_API_KEY")

# 定义生成SQL查询的提示模板
sql_generation_prompt = PromptTemplate(
    template="You are an AI assistant. Given the following user request and the database st
### 使用 LangChain4J 实现自然语言到 SQL生成功能 LangChain 是一种强大的工具,它通过结合大型语言模型 (LLM) 和外部数据源来增强其功能[^1]。具体来说,在处理自然语言到 SQL 转换的任务时,可以利用 LangChain 提供的模块化设计以及索引接口来加载、查询和更新外部数据库中的结构化数据[^2]。 以下是基于 LangChain4J 框架实现自然语言转 SQL 功能的一个示例: #### 依赖项配置 首先需要确保项目中引入了必要的库文件。对于 Java 开发者而言,可以通过 Maven 或 Gradle 添加如下依赖项: ```xml <dependency> <groupId>com.langchain</groupId> <artifactId>langchain4j-core</artifactId> <version>0.0.1-SNAPSHOT</version> </dependency> <!-- 如果涉及 SQL 数据库操作 --> <dependency> <groupId>org.xerial</groupId> <artifactId>sqlite-jdbc</artifactId> <version>3.36.0.3</version> </dependency> ``` #### 自然语言解析器设置 创建一个自定义类 `SqlGenerationAgent` 来封装整个流程逻辑。该代理会接收用户的输入文本并调用预训练好的 LLM 完成语义理解部分的工作;随后再依据解析结果构建对应的 SQL 查询字符串。 ```java import com.langchain.core.Agent; import com.langchain.tools.sql.SQLDatabaseTool; public class SqlGenerationStrategy { private final Agent agent; public SqlGenerationStrategy(SQLDatabaseTool tool){ this.agent = new Agent.Builder() .addTool(tool) .build(); } /** * 将自然语言转换为 SQL 查询. */ public String generate(String inputText){ return agent.run(inputText); } } ``` #### 整合外部数据库支持 为了使生成出来的 SQL 可以实际运行于目标环境之上,还需要提前准备好相应的 JDBC 连接参数并与之绑定起来形成完整的 `SQLDatabaseTool` 对象实例。 ```java import java.sql.Connection; import java.sql.DriverManager; public static void main(String[] args)throws Exception{ Connection conn = DriverManager.getConnection("jdbc:mysql://localhost/testdb","root",""); SQLDatabaseTool sqlTool = new SQLDatabaseTool(conn); SqlGenerationStrategy generator = new SqlGenerationStrategy(sqlTool); System.out.println(generator.generate("Find all users whose age is greater than 30")); } ``` 上述代码片段展示了如何借助 LangChain4J 构建起一套端到端解决方案的过程概述[^1]^。值得注意的是这里仅作为概念验证用途展示,并未考虑诸如安全性校验之类的生产级需求因素。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值