文章目录
前言
最近提问里有问到一些名词:线性层、前向传播、后向传播。这些实际是神经网络的一些基础概念,我们可以先通过通俗易懂的方式简单了解下它们
一、线性层
1. 什么是线性层?
- 线性层(Linear Layer)是神经网络中的一种基本层,也称为全连接层(Fully Connected Layer)。
- 它的工作方式类似于简单的线性方程:
y = Wx + b
,其中W
是权重矩阵,x
是输入,b
是偏置项,y
是输出。 - 线性层的主要任务是将输入的数据通过权重和偏置进行线性变换,从而生成输出。
2. 通俗解释
想象你是一家餐馆的老板,你要根据顾客的点餐数量来计算总价:
x
是顾客点的每种菜的数量。W
是每种菜的单价。b
是固定的服务费。
你通过这个公式计算出顾客需要支付的总价,这就相当于线性层的作用。
3. 示例
假设一个线性层输入是3维的,输出是2维的,可以理解为:
- 输入是一个包含3个数的列表(比如顾客点了3种菜的数量)。
- 线性层把这3个数转换成另一个包含2个数的列表(比如总价和服务费)。
二、前向传播
1. 什么是前向传播?
- 前向传播(Forward Propagation)是神经网络计算输出的过程。
- 它从输入层开始,通过各个隐藏层,最后到达输出层,每一层的输出都是下一层的输入。
- 这个过程相当于逐层传递和处理信息。
2. 通俗解释
想象你要烤一个蛋糕,过程如下:
第1步: 输入层:你有原材料(比如面粉、鸡蛋、糖)。
第2步: 隐藏层:你按照步骤混合材料、搅拌、烘烤。
第3步: 输出层:你得到一个蛋糕。
前向传播就像这个烤蛋糕的过程,你一步步按照食谱操作,最后得到一个结果。