大模型一些概念的理解 - 线性层、前向传播、后向传播


前言

最近提问里有问到一些名词:线性层、前向传播、后向传播。这些实际是神经网络的一些基础概念,我们可以先通过通俗易懂的方式简单了解下它们


一、线性层

1. 什么是线性层?

  • 线性层(Linear Layer)是神经网络中的一种基本层,也称为全连接层(Fully Connected Layer)。
  • 它的工作方式类似于简单的线性方程:y = Wx + b,其中 W 是权重矩阵,x 是输入,b 是偏置项,y 是输出。
  • 线性层的主要任务是将输入的数据通过权重和偏置进行线性变换,从而生成输出。

2. 通俗解释

想象你是一家餐馆的老板,你要根据顾客的点餐数量来计算总价:

  • x 是顾客点的每种菜的数量。
  • W 是每种菜的单价。
  • b 是固定的服务费。

你通过这个公式计算出顾客需要支付的总价,这就相当于线性层的作用。

3. 示例

假设一个线性层输入是3维的,输出是2维的,可以理解为:

  • 输入是一个包含3个数的列表(比如顾客点了3种菜的数量)。
  • 线性层把这3个数转换成另一个包含2个数的列表(比如总价和服务费)。

二、前向传播

1. 什么是前向传播?

  • 前向传播(Forward Propagation)是神经网络计算输出的过程。
  • 它从输入层开始,通过各个隐藏层,最后到达输出层,每一层的输出都是下一层的输入。
  • 这个过程相当于逐层传递和处理信息。

2. 通俗解释

想象你要烤一个蛋糕,过程如下:

第1步: 输入层:你有原材料(比如面粉、鸡蛋、糖)。
第2步: 隐藏层:你按照步骤混合材料、搅拌、烘烤。
第3步: 输出层:你得到一个蛋糕。

前向传播就像这个烤蛋糕的过程,你一步步按照食谱操作,最后得到一个结果。

3. 示例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值