
随笔分享
文章平均质量分 91
科技之歌
高级系统架构师、智能交互实验室负责人,专注于LLM应用、自然语言处理与元宇宙交互等领域, 在智能交互与人工智能产业化落地方面有着丰富经验。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
实战指南 | 通过 Amazon Bedrock 快速接入 DeepSeek-R1 大模型
print("\n\n生成完成,耗时%.2fs" % event['messageStop']['metrics']['latencyMs']/1000)"content": [{"text": "用Python实现快速排序算法,添加代码注释"}]print(f"角色: {event['messageStart']['role']}")• 登录 [Bedrock控制台](https://aws.amazon.com/bedrock/)| CallCount | >5000次/分钟 | 5分钟 |原创 2025-04-15 17:44:06 · 788 阅读 · 0 评论 -
具身智能新时代
一、初窥具身智能神秘面纱想象一下,当你下班回家,疲惫不堪,家中的智能机器人不仅能精准地识别你的情绪状态,还能迅速为你准备好一杯热气腾腾的咖啡,接着有条不紊地播放你最爱的舒缓音乐,甚至还能根据你的身体状况,贴心地为你制定一份专属的放松计划。这看似科幻电影中的场景,却正是具身智能技术努力实现的目标。具身智能,这一听起来既陌生又充满未来感的概念,正逐渐走进我们的生活。它究竟是什么?简单来说,具身智能是指智能体通过与环境进行物理交互,从而实现感知、学习、决策与行动的一种人工智能形式。与传统人工智能有所不原创 2025-01-17 15:29:46 · 1010 阅读 · 0 评论 -
OpenSearch的演进与语义检索技术革新
OpenSearch是一个开源的搜索与分析套件,起源于ElasticSearch 7.10.2版本,坚持Apache-2.0开源协议,以开源优先和社区驱动为原则。OpenSearch项目不仅提供了强大的搜索功能,还包括了DataPrepper、Dashboard等组件,广泛应用于搜索、可观测性、安全分析、数据可视化和机器学习等领域。向量搜索引擎从原始向量做写入、查询,OpenSearch做了很多运行速度、压缩量化方面的优化。原创 2024-07-02 10:04:52 · 1302 阅读 · 0 评论 -
提示工程方法总结
高效提示方法的发展经历了从手动设计提示到自动优化提示的转变,未来的提示方法可能会将高效提示范式抽象为一个多目标优化问题,旨在压缩提示以降低计算复杂性,同时优化LLM任务的准确性。可以预见,未来的提示研究将围绕硬提示展开,因为LLM的不可访问性已成为不可逆转的趋势。未来的研究方向可能包括:过滤掉冗余信息、微调LLM的可访问参数、以及硬提示和软提示的协同优化。论文链接。原创 2024-08-06 18:08:19 · 1446 阅读 · 0 评论 -
Adapter Tuning:高效NLP迁移学习方法
论文在多个数据集上验证了Adapter Tuning的有效性,主要包括GLUE基准测试集和其他17个公开的文本分类任务。这些数据集涵盖了广泛的NLP任务,如情感分析、文本蕴含、问答等,确保了实验结果的全面性和代表性。GLUE基准测试集:包含多个文本分类和文本对任务,如MNLI(多类型自然语言推理)、QNLI(问题自然语言推理)、QQP(问答对匹配)等。这些任务旨在评估模型在理解自然语言文本及其关系方面的能力。其他文本分类任务。原创 2024-08-08 11:18:15 · 1499 阅读 · 0 评论 -
leetcode 552. 学生出勤记录 II
如果第 i 天的出勤记录是 ‘L’,则前 i 天和前 i−1 天的出勤记录相比,‘A’ 的数量不变,结尾连续 ‘L’ 的数量加 1,此时要求前 i−1 天的出勤记录记录中的结尾连续 ‘L’ 的数量不超过 1,否则前 i 天的出勤记录的结尾至少有 3 个 ‘L’,不满足可奖励的条件,因此对 0≤j≤1 和 1≤k≤2,有。定义 dp[i][j][k] 表示前 i 天有 j 个 ‘A’ 且结尾有连续 k 个 ‘L’ 的可奖励的出勤记录的数量,其中 0≤i≤n,0≤j≤1,0≤k≤2。空间复杂度:O(1)。原创 2024-08-19 17:12:47 · 1079 阅读 · 0 评论 -
新增道路查询后的最短距离
今天看到很有意思的一个题目,记录下来,供大家参考。原创 2024-08-04 21:57:53 · 554 阅读 · 0 评论 -
Prefix Tuning论文解读
为了解决这些问题,研究人员提出了一种新的方法——Prefix Tuning,它通过优化连续的提示(prompts)来适应不同的生成任务,而无需修改预训练模型的主要参数。Prefix Tuning的核心思想是在预训练模型的输入层之前添加一系列可训练的连续向量(即前缀),这些前缀作为额外的输入与原始输入一起被模型处理。为了克服这些问题,Prefix Tuning提出了一种新的思路:通过向预训练模型添加可训练的连续提示(prompts),而不是直接修改模型的主要参数,来实现对新任务的适应。原创 2024-08-08 17:47:34 · 780 阅读 · 0 评论 -
LeetCode 2732. 找到矩阵中的好子集
给定一个 m x n 的整数矩阵mat和一个整数k,我们需要找到一个大小为k的子集rows,使得这个子集对应的行在矩阵mat中构成的子矩阵中,所有元素之和最大。返回这个子矩阵中所有元素之和的最大值。rowsrowsk18解释:选择第 1 行和第 2 行,得到子矩阵,子矩阵中所有元素之和为 18。为了解决这个问题,我们需要从几个不同的角度进行思考。首先,由于题目要求返回的是子矩阵中所有元素之和的最大值,我们可以考虑使用贪心算法来尝试解决这个问题。原创 2024-06-25 22:02:00 · 886 阅读 · 0 评论 -
从信息论的角度看微博推荐算法
香农在其开创性著作《通信的数学理论》中首次提出了信息论。信息论的核心在于量化信息的不确定性和相关性。熵(Entropy)是衡量信息不确定性的度量,互信息(Mutual Information)则衡量两个信息源之间的相互依赖性,而信道容量(Channel Capacity)则描述了在特定信道下可以传输的最大信息量。通过本文的探讨,我们可以看到信息论在推荐系统中的广泛应用和重要性。从信息论的基础概念到其在推荐系统中的具体应用,再到微博推荐算法的全链路信息论实践,信息论为推荐系统提供了一种新的视角和方法。原创 2024-07-25 08:44:07 · 1832 阅读 · 0 评论 -
LLM开源框架总结
Rank1、AutoGPT(161k stars)>https://github.com/Significant-Gravitas/AutoGPTRank2、LangChain(82.7k stars)>https://github.com/langchain-ai/langchainRank3、MetaGPT(39.1k stars)>https://github.com/geekan/MetaGPTRank4、AutoGen(24.8k stars)>https://github.com/microso原创 2024-06-23 07:15:00 · 666 阅读 · 0 评论 -
决策树算法介绍:原理与案例实现
后剪枝是在决策树生成完成后进行的剪枝,它首先将决策树生长到最大,然后自底向上对非叶子节点进行考察,若将该节点对应的子树替换为叶子节点能带来性能提升,则将该子树替换为叶子节点。我们将使用scikit-learn内置的Iris数据集,这是一个经典的多分类问题数据集,包含了三种鸢尾花的四个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和对应的类别标签。预剪枝是在决策树生成过程中进行的剪枝,当某个节点的划分不能带来性能提升时,就停止该节点的划分,并将其标记为叶子节点。常见的决策树剪枝技术包括预剪枝和后剪枝。原创 2024-06-19 08:39:39 · 1168 阅读 · 0 评论 -
Leetcode 2972. 统计移除递增子数组的数目 II
题目描述:给你一个下标从开始的整数数组nums。如果nums的一个子数组满足:移除这个子数组后剩余元素,那么我们称这个子数组为子数组。比方说,中的[3, 4]是一个移除递增子数组,因为移除该子数组后,变为[5, 6, 7],是严格递增的。请你返回nums中子数组的总数目。,剩余元素为空的数组也视为是递增的。指的是一个数组中一段连续的元素序列。10。原创 2024-07-11 08:29:38 · 498 阅读 · 0 评论 -
LLM在软件测试中的革新应用
LLM在软件测试领域的应用具有广泛的前景和潜力。通过构建领域知识库和业务知识图谱、自动生成测试用例和测试数据、实现测试自动化和智能化、进行缺陷预测和挖掘以及实现代码精准测试等应用方向,LLM可以大大提高软件测试的效率和质量,为软件质量保障提供有力支持。然而,我们也需要注意到LLM在软件测试领域的应用还存在一些挑战和问题。例如,如何保证LLM模型的准确性和鲁棒性、如何处理多语言和跨文化的问题、如何平衡LLM模型的学习效率和效果等。原创 2024-06-27 09:48:29 · 1875 阅读 · 0 评论 -
leetcode 2940: 找到 Alice 和 Bob 可以相遇的建筑
第二个查询中,Alice 和 Bob 可以移动到建筑 5 ,因为 heights[0] < heights[5] 且 heights[3] < heights[5]。第四个查询中,Alice 和 Bob 可以移动到建筑 5 ,因为 heights[3] < heights[5] 且 heights[4] < heights[5]。第二个查询中,Alice 和 Bob 可以移动到建筑 6 ,因为 heights[3] < heights[6] 且 heights[5] < heights[6]。原创 2024-08-10 08:35:49 · 740 阅读 · 0 评论 -
联盟学习:技术原理、特点及适用场景
联盟学习作为一种新兴的技术,为数据价值的挖掘提供了新的思路和方法。通过深入学习和实践联盟学习技术,我们可以更好地利用碎片化、分散化的数据资源,推动科技进步和社会发展。同时,我们也需要关注联盟学习的不足之处和潜在风险,加强安全防护和性能优化等方面的研究。原创 2024-06-24 07:15:00 · 1101 阅读 · 0 评论 -
IPython使用技巧整理
在IPython中,可以使用%alias命令为常用命令创建别名,以便更快地执行它们。例如,可以将%history命令的别名设置为hh # 执行%history命令,列出历史命令列表此外,还可以使用%macro命令将一系列命令组合成一个宏,并为该宏命名。然后,可以通过宏名来执行这组命令。在需要重复执行一系列命令时非常有用。# 定义一个宏,用于绘制正弦波plt.show()# 执行宏,绘制正弦波sine_plot。原创 2024-06-25 09:00:26 · 637 阅读 · 0 评论 -
目标检测算法的研究现状
一阶段检测器如YOLO(You Only Look Once)和SSD(Single Shot MultiBox Detector)等,通过直接在图像上设置大量的预定义锚框(anchor boxes),并预测其类别和位置,实现快速的目标检测。Faster R-CNN的损失函数包括RPN的分类损失、RPN的边界框回归损失、Fast R-CNN的分类损失和Fast R-CNN的边界框回归损失。多模态大模型在目标检测领域的应用日益广泛,它们通过结合文本、图像等多种模态的信息,提高了目标检测的准确性和效率。原创 2024-07-01 09:26:57 · 3221 阅读 · 0 评论 -
VXML Grammars, Scope, and Event Handlers
构建健壮的语音应用程序意味着在有经验的用户和小白用户的需求之间取得平衡。有经验的用户通常希望跳转到他们已经知道的选项;小白用户通常希望他们能得到相应的帮助。与大多数现代编程语言一样,Voice XML提供了一个结构化的应用程序框架,它支持事件、处理程序和范围规则,使开发人员能够微调语音应用程序在不同上下文中的响应方式。 了解VXML基础知识(如dtmf、field...原创 2020-04-01 14:52:02 · 454 阅读 · 0 评论 -
Leetcode 115 不同的子序列
在实际应用中,推荐使用动态规划或递归加记忆化的方法来解决这类问题,因为它们具有更高的效率。动态规划方法通过填表的方式避免了重复计算,而递归加记忆化方法则通过记忆化来优化递归过程中的重复计算,两者都是解决这类问题的有效手段。原创 2024-07-04 17:29:42 · 590 阅读 · 0 评论 -
2024年Google开发者大会:AI赋能的Web、移动和云开发
从Gemini Nano模型的多样化应用,到Prompt API的实验性功能,再到AI Core系统服务和Jetpack Compose的UI构建,以及云端新旅程的五大特性,这些技术的发展不仅为开发者提供了新的工具和平台,也为用户带来了更加丰富和个性化的体验。大会的开幕由Google大中华区总裁陈俊廷先生的主题演讲引领,他不仅回顾了中国开发者在全球技术舞台上的卓越表现,更展望了AI技术如何塑造未来的开发趋势。这一平台的推出,不仅降低了AI技术的入门门槛,也为开发者提供了更多的创新可能性。原创 2024-08-20 17:26:09 · 2786 阅读 · 0 评论 -
企业知识图谱问答系统
在构建知识图谱时,首先需要从企业内部各种数据源中提取数据,并通过ETL(Extract, Transform, Load)流程将数据加载到Wikibase中。数据的结构化和标准化是构建高质量知识图谱的基础。通过定义本体(Ontologies),我们可以清晰地定义知识图谱中的实体、属性和关系,从而构建一个结构清晰、易于理解的知识图谱。在本案例中,企业知识图谱的本体基于基础形式本体(BFO)进行扩展,涵盖了技术、安全、人员、销售、人力资源、教育和医疗等多个领域。原创 2024-08-20 14:14:43 · 1131 阅读 · 0 评论 -
Gemma 2 2B:针对小型 LLM 提示工程关注点
在人工智能领域,语言模型(LLMs)根据其参数的数量可以分为不同规模。小型LLMs通常指的是参数数量在数百万到数十亿范围内的模型。这些模型相较于拥有数十亿甚至数千亿参数的大型模型,虽然在处理能力和知识广度上有所限制,但它们在资源消耗和部署灵活性上具有优势。原创 2024-08-11 13:48:02 · 1127 阅读 · 0 评论 -
腾讯游戏用户增长策略实践深度解析
腾讯游戏在SDC 2023全球软件研发技术大会上分享了其在用户增长策略实践方面的宝贵经验。通过构建基于大语言模型(LLM)的游戏知识库和全域用户增长策略,腾讯游戏成功实现了多游戏、多场景、多目标下的用户增长目标。原创 2024-08-11 11:19:31 · 2835 阅读 · 0 评论 -
从战略到系统架构:信息系统设计的全面解析
系统架构是信息系统设计的核心,它决定了系统的整体结构、组件关系、交互方式等。将信息系统架构转换为系统设计时,需要继承信息系统架构并添加更多细节,包括实际的硬件、数据、网络和软件。进而扩展到数据的位置和访问过程、防火墙的位置、链路规范、互联设计等。信息系统架构被转换为功能规格。功能规格可以分为硬件规格、软件规格、存储规格、接口规格、网络规格等。然后决定如何实现这些规范,并在信息系统基础架构中使用什么硬件、软件、存储、接口、网络等。CIO需根据信息系统的愿景规划,制定系统架构方案。原创 2024-08-10 10:04:27 · 2141 阅读 · 0 评论 -
IT治理体系:构建企业数字化转型的基石
IT治理是指企业为确保IT资源有效支持并推动业务目标实现,而制定的一系列决策权分配、责任划分、绩效评估和监督机制的总和。它涵盖了IT战略规划、资源分配、风险管理、合规性、绩效评估等多个维度,旨在通过科学合理的治理结构和流程,优化IT投资回报,增强组织的灵活性和响应速度。IT治理用于描述组织在信息化建设和数字化转型过程中是否采用有效的机制使得信息技术开发利用能够完成组织赋予它的使命。IT治理的核心是关注IT定位和信息化建设与数字化转型的责权利划分,如图所示。IT治理体系的具体构成包括IT定位;原创 2024-08-07 17:37:36 · 1954 阅读 · 0 评论 -
WebKit简介及工作流程
随着互联网的飞速发展,浏览器作为用户访问网络世界的门户,其性能和稳定性日益成为关注的焦点。在众多浏览器引擎中,WebKit以其卓越的渲染性能和跨平台特性,赢得了广泛赞誉。作为前端技术专家,深入了解WebKit的架构和工作流程,对于提升Web开发效率和用户体验至关重要。本文将全面介绍WebKit的简介、重要性、历史与发展、架构概览、工作流程及其在现代Web开发中的应用。原创 2024-08-03 08:12:59 · 1315 阅读 · 0 评论 -
信息安全技术解析
加密解密技术是保护数据安全的核心手段,通过特定的算法和密钥将明文(可理解的信息)转换为密文(不可理解的信息),并在需要时通过相同或不同的密钥还原为明文。这一过程确保了数据在传输和存储过程中的机密性、完整性和可用性。UEBA(User and Entity Behavior Analytics,用户和实体行为分析)主要用于检测用户以及网络中实体(网络设备、进程、应用程序等)的异常行为,然后判断异常行为是否存在安全威胁,并及时向运维人员发出告警。原创 2024-07-26 09:57:01 · 808 阅读 · 0 评论 -
智慧转移:从数据到智慧的旅程
在当今快速发展的知识经济时代,智慧转移不仅是企业和组织成功的关键因素,更是推动社会进步的重要动力。智慧转移不仅涉及知识的传递,更关乎如何将这些知识转化为实际的行动和决策,从而推动创新和进步。智慧转移涉及从数据到智慧的转化过程,这一过程不仅需要技术和工具的支持,更需要组织文化和战略的配合。本文将深入探讨智慧转移的两个主要过程——“智慧--数据”和“数据--智慧”,并分析它们在企业知识管理中的应用。原创 2024-07-23 10:33:34 · 2737 阅读 · 0 评论 -
知识库系统平台管理与优化
在之前做的关于FAQ知识库问答系统中,总结了相关踩坑内容,梳理如下,供大家参考。系统平台的管理与优化对于企业来说至关重要,它不仅关乎数据处理的效率,还直接影响到用户体验和业务成果。本文将从系统平台管理方式、系统架构、知识运营优化、知识召回策略、运维方式处理以及后续规划六个方面,探讨如何全面提升系统平台的性能与质量。原创 2024-07-05 10:37:29 · 1875 阅读 · 0 评论 -
智能本质:马毅教授对大模型和白盒理论的观点
在人工智能的快速发展中,我们见证了从简单的自动化工具到复杂的智能系统的演变。随着深度学习技术的突破,大模型如GPT系列已经能够执行从文本生成到图像识别等多样化任务。然而,这些模型虽然在功能上取得了显著进展,但其内部工作机制往往被视为黑箱,缺乏透明度和可解释性。香港大学计算机系主任、数据科学研究院院长马毅教授,以其独到的见解和深入的研究,填补研究的空白。他提出了白盒模型的概念,旨在提高模型的可解释性,同时探索智能的本质。本文将探讨马毅教授的观点,从智能与知识的区分出发,探索他对大模型和白盒理论的看法。原创 2024-07-04 17:19:03 · 1341 阅读 · 0 评论 -
大语言模型消除幻觉的解决方法
随着人工智能技术的飞速发展,大型语言模型(LLMs)已经成为自然语言处理领域的明星。它们以其庞大的知识库和生成连贯、上下文相关文本的能力,极大地推动了研究、工业和社会的进步。然而,这些模型在生成文本时可能会产生所谓的“幻觉”——即生成看似合理但事实上错误或无意义的信息。这种现象不仅引起了对安全性和伦理性的担忧,也对LLMs的可靠性提出了挑战。原创 2024-06-26 15:43:54 · 1294 阅读 · 0 评论 -
意识与通用人工智能见解(北京智源大会)
讨论表明,意识与AGI的关系远比我们想象的要复杂。意识不仅是哲学和心理学的问题,也是神经科学、计算机科学乃至整个社会需要面对的挑战。随着技术的进步,我们对意识的理解将不断深化,而AGI的发展也将为我们带来前所未有的机遇和挑战。未来,我们期待在这一领域的更多突破,为人类社会的发展贡献智慧和力量。同时,我们也应当思考如何在AI的发展中平衡技术进步与伦理道德,确保AI技术的发展能够造福人类,而不是成为新的挑战。在探索意识与AGI的奥秘时,我们不仅需要科学家的智慧,更需要全社会的参与和思考。原创 2024-06-26 15:27:57 · 884 阅读 · 0 评论 -
AI 语录(一)
Midjourney创始人关于AI的一些看法给了我新的输入,AI越来越智能化给人了一种脊背发凉的感觉,但是从新水源和冲浪板的角度看,学习驾驭AI和AI共存的方式更加积极也更加合理。"当计算机比99%的人善于视觉想象的时候,这意味着什么,这并不意味着我们要停止想象,比如骑车比人快,难到就不需要步行了嘛,当我们远距离需要运送物品的时候,我们需要发动机,飞机,汽车。今天如果我们需要非常狂野的想象未来的时候,我们需要一个引擎。我们要做的不是用人的体力和精力赛跑而是如何驾驭这个引擎。原创 2024-06-22 07:00:00 · 834 阅读 · 0 评论 -
生产环境下部署微调的10条戒律
4、第四戒律:应当使用真实数据,使用真实的业务数据进行模型训练和测试,并确保数据集在平均水平上是正确的,即使有些错误数据也是可以接受的。9、第九戒律:不可“发射后不管”,部署模型后,持续监控和改进模型,避免一次性部署后不再维护。6、第六戒律:应当选择合适的模型,根据具体任务选择最适合的模型,以实现最佳性能和资源效率。8、第八戒律:亦应当编写慢速评估,编写详细的评估工具,以全面测试模型的各方面性能。3、第三戒律:应当审查你的数据,仔细检查和清洗数据,以确保数据的准确性和一致性。原创 2024-06-18 09:24:05 · 381 阅读 · 0 评论