
存内计算
文章平均质量分 90
科技之歌
高级系统架构师、智能交互实验室负责人,专注于LLM应用、自然语言处理与元宇宙交互等领域, 在智能交互与人工智能产业化落地方面有着丰富经验。
展开
-
存内计算:入门篇(二)
在当今数字化时代,数据量呈爆炸式增长,对计算能力的需求也日益迫切。传统的冯・诺伊曼架构在面对海量数据处理时,逐渐暴露出其固有的局限性,即 “存储墙” 问题。数据在存储器和处理器之间频繁传输,不仅消耗大量的时间和能源,还限制了计算速度的进一步提升。存内计算(Computing in Memory,CIM)应运而生,成为解决这一问题的关键技术之一。存内计算是一种将计算和存储功能融合在一起的新型计算架构。原创 2025-01-15 07:00:00 · 1175 阅读 · 0 评论 -
存算一体技术与大模型
在阅读《基于存算一体集成芯片的大模型专用硬件架构》论文后,对存算一体技术有了新的认识,梳理文章内容如下。本文分析了大模型在参数规模和系统算力需求上的指数级增长趋势,介绍了存算一体集成芯片的优势,包括缓解带宽瓶颈、实现高并行度数据流和多样化的存算一体技术分类。探讨了通过轻量化-存内压缩的协同设计,展示了存算一体架构在带宽需求、功耗和面积效率等方面的优势。总体而言,存算一体集成芯片为大模型的推理提供了一种高效、节能且具有潜力的硬件解决方案,供大家学习参考。原创 2025-01-14 07:15:00 · 1234 阅读 · 0 评论 -
存内计算简介:入门篇(一)
存内计算是一种创新的计算架构,它将计算任务直接嵌入到数据存储器内部进行处理,从而避免了传统计算模型中频繁的数据传输和复杂的内存管理,显著提高了计算效率和性能。随着人工智能技术的发展,AI在各领域的应用逐渐广泛,以深度学习为代表的神经网络算法需要系统能高效处理海量的非结构化数据,例如文本、视频、图像、语音等,这导致在冯·诺伊曼架构下的硬件需要频繁读写内存,其计算任务有着并行运算量大、参数多的特点,这使得AI芯片对并行运算、低延迟、带宽等有着更高的要求,也因此,存内计算在人工智能时代迎来了发展的黄金时期。原创 2025-01-13 07:15:00 · 890 阅读 · 0 评论