在人工智能飞速发展的今天,大型语言模型(LLM)以其强大的文本生成能力,正在深刻改变我们与信息互动的方式。然而,LLM也并非完美无缺,它们常常面临“幻觉”(Hallucination)问题,即生成看似合理却与事实不符的内容;同时,LLM的知识也受限于其训练数据,难以获取实时或领域特定的信息。为了解决这些挑战,检索增强生成(Retrieval-Augmented Generation, RAG)技术应运而生,它通过引入外部知识库,显著提升了LLM的准确性和可靠性。近年来,随着AI代理(AI Agent)概念的兴起,RAG技术进一步演化,形成了更具动态性和自主性的Agent RAG。二者在核心概念、工作原理、优势与局限等方面有什么不同?
一、RAG:为LLM插上知识的翅膀
1、什么是RAG?
RAG(Retrieval-Augmented Generation)是一种结合了信息检索技术与大型语言模型(LLM)的AI框架。其核心思想是,在LLM生成回答之前,先从一个或多个外部知识库中检索相关信息,然后将这些检索到的信息作为上下文,输入给LLM,引导LLM生成更准确、更具事实依据的回答。这种方法有效弥补了LLM在知识时效性和准确性上的不足,使其能够处理更广泛、更专业的查询。
2、RAG的工作原理
RAG的工作流程通常包括以下几个关键步骤:
- 数据索引(Indexing): 首先,需要将外部知识库中的数据进行处理和索引。这通常包括:
- 数据加载: 从各种来源(如文档、数据库、网页等)加载数据。
- 文本分割(Chunking): 将长文本分割成更小的、可管理的“块”(chunks),以便于检索。
- 向量化(Embedding): 使用嵌入模型将文本块转换为高维向量表示(embeddings)。这些向量捕捉了文本的语义信息,使得相似的文本在向量空间中距离更近。
- 向量存储(Vector Store): 将向量化的文本块存储在向量数据库中,以便进行高效的相似性搜索。
- 检索(Retrieval): 当用户提出查询时,RAG系统会执行以下操作:
- 查询向量化: 用户的查询同样通过嵌入模型转换为向量。
- 相似性搜索: 在向量数据库中进行相似性搜索,找出与用户查询向量最相似的文本块。这些文本块被认为是与查询最相关的知识片段。
-
增强(Augmentation): 检索到的相关文本块被整合到原始用户查询中,形成一个“增强型提示”(augmented prompt)。这个提示包含了用户的问题和从外部知识库中获取的额外上下文信息。
-
生成(Generation): 最后,将增强型提示输入给LLM。LLM利用其强大的语言理解和生成能力,结合提供的上下文信息,生成最终的回答。由于LLM在生成过程中有外部知识的“指导”,因此其回答的准确性和可靠性大大提高,并能有效减少幻觉现象。
图1:RAG基本架构示意图
3、RAG的优势与局限
优势:
- 提高准确性: 通过引入外部知识,显著减少LLM的幻觉,提供更准确的事实性回答。
- 知识时效性: 能够访问和利用最新的信息,克服LLM训练数据固有的滞后性。
- 领域特定知识: 允许LLM回答特定领域或企业内部知识库中的问题,而无需重新训练模型。
- 可解释性: 检索到的来源可以作为回答的“证据”,提高了回答的可信度和可解释性。
- 成本效益: 相较于对LLM进行微调或从头训练,RAG的实现和维护成本更低。
局限:
- 检索质量依赖: RAG的性能高度依赖于检索到的信息质量。如果检索到的信息不准确或不相关,LLM的回答也会受到影响。
- 上下文窗口限制: LLM的上下文窗口大小有限,过多的检索信息可能导致信息截断或关键信息丢失。
- 单次检索: 传统的RAG通常只进行一次检索,如果首次检索未能获取到足够或最相关的信息,后续生成质量会受限。
- 查询复杂性: 对于需要多跳推理或复杂逻辑的查询,简单的RAG可能难以有效处理。
- 数据管理: 维护和更新大规模外部知识库,并确保其高质量和可检索性,是一项挑战。
二、Agent RAG:智能代理赋能的RAG新境界
1、什么是Agent RAG?
Agent RAG(Agentic Retrieval-Augmented Generation)是RAG技术与AI代理(AI Agent)概念的深度融合。它在传统RAG的“检索-增强-生成”流程中引入了智能代理,赋予LLM更强的自主决策、规划和工具使用能力。Agent RAG系统中的AI代理不再是被动地接收检索结果,而是能够主动地根据任务需求,动态地选择检索策略、调用外部工具、甚至进行多轮次的交互和推理,从而处理更复杂、更动态的信息检索和生成任务。
2、Agent RAG的工作原理
Agent RAG的核心在于其引入的AI代理,这些代理通常具备以下关键能力:
- 记忆(Memory): AI代理拥有短期和长期记忆,能够记住之前的交互历史、检索结果和决策过程。这使得代理能够进行更复杂的规划和执行,并从过去的经验中学习,优化未来的工作流程。Agent RAG系统常利用语义缓存来存储和引用历史查询、上下文和结果。
- 规划(Planning): 代理能够根据用户查询和当前任务目标,自主地制定多步骤的执行计划。这包括决定何时进行检索、检索哪些信息、如何处理检索结果,以及何时调用外部工具等。这种规划能力使得Agent RAG能够处理传统RAG难以应对的复杂查询和多跳推理。
- 工具使用(Tool Use): AI代理能够通过API调用各种外部工具,而不仅仅是知识库。这些工具可以是搜索引擎、数据库查询工具、代码解释器、计算器,甚至是其他AI模型。通过灵活地使用工具,代理能够扩展LLM的能力边界,执行更广泛的任务。
- 查询路由与重构(Query Routing & Reformulation): 与传统RAG直接使用用户查询进行检索不同,Agent RAG中的代理可以根据任务需求,对原始查询进行分析、重构,甚至生成新的查询。例如,如果原始查询不够清晰,代理可以生成一个更精确的查询来提高检索效率;如果需要多方面的信息,代理可以生成多个子查询并行检索。
Agent RAG的工作流程可以概括为:用户提出查询 -> AI代理分析查询并制定计划 -> 代理执行计划(可能包括多轮次的检索、工具调用、信息处理和推理) -> 代理将处理后的信息反馈给LLM -> LLM生成最终回答。
图2:Agent RAG架构示意图
3、Agent RAG的优势与局限
优势:
- 处理复杂任务: 能够处理需要多步骤推理、多源信息整合和动态决策的复杂任务。
- 更高的自主性: AI代理的引入使得系统更具自主性,能够根据环境变化和任务需求进行自适应调整。
- 更强的灵活性: 通过工具调用,Agent RAG能够集成各种外部能力,极大地扩展了LLM的应用范围。
- 减少对检索质量的单一依赖: 即使首次检索结果不理想,代理也可以通过重新规划、重构查询或调用其他工具来尝试获取更优的信息。
- 更精细的控制: 代理可以对信息检索和处理过程进行更精细的控制,例如选择最合适的检索器、优化检索参数等。
局限:
- 复杂性增加: 引入AI代理和多轮次交互使得系统架构和实现变得更加复杂,调试和维护成本更高。
- 性能开销: 额外的规划、决策和工具调用会增加计算开销和响应时间。
- 代理设计挑战: 设计高效、鲁棒且能够处理各种边缘情况的AI代理是一项挑战。
- 可控性与透明度: 代理的自主性可能导致其行为难以完全预测和解释,降低系统的可控性和透明度。
- 潜在的错误传播: 如果代理在规划或工具使用过程中出现错误,可能会导致错误信息在整个流程中传播,影响最终结果。
三、RAG与Agent RAG的系统性对比
为了更清晰地理解RAG和Agent RAG之间的区别与联系,下表对其核心特性进行了系统性对比:
特性 | RAG (传统) | Agent RAG |
---|---|---|
核心理念 | 通过外部知识库增强LLM的事实准确性,减少幻觉。 | 引入智能代理,使LLM具备自主决策、规划和工具使用能力,处理更复杂任务。 |
工作流程 | 相对线性:查询 -> 检索 -> 增强 -> 生成。 | 动态、迭代、非线性:代理分析 -> 规划 -> 执行(多轮检索、工具调用、推理) -> 生成。 |
信息检索 | 通常基于语义相似度进行单次检索,依赖预设知识库。 | 代理可根据任务动态选择检索策略,进行多轮、多源检索,甚至重构查询。 |
工具使用 | 局限于知识库检索。 | 广泛且灵活,代理可调用各种外部工具(如搜索引擎、数据库、API、代码解释器等)。 |
自主性与智能 | 较低,主要作为LLM的“知识补充模块”。 | 较高,代理具备记忆、规划、决策能力,是LLM的“智能协调者”。 |
任务复杂性 | 适用于事实性问答、内容总结等相对直接的任务。 | 适用于复杂研究、数据分析、多步骤推理、自动化工作流等高级任务。 |
系统架构 | 相对简单,主要涉及LLM、嵌入模型和向量数据库。 | 复杂,包含LLM、嵌入模型、向量数据库、以及一个或多个具备记忆、规划、工具调用能力的AI代理。 |
性能与效率 | 响应速度较快,计算开销相对较低。 | 响应时间可能较长,计算开销较高,因为涉及多轮交互和复杂决策。 |
可解释性 | 检索来源可追溯,但代理决策过程可能不透明。 | 检索来源可追溯,但代理决策过程可能更复杂,需要额外的日志和监控。 |
主要优势 | 快速提升LLM准确性,降低幻觉,成本效益高。 | 处理复杂任务能力强,灵活性高,自主性强,可扩展性好。 |
主要挑战 | 检索质量依赖,上下文窗口限制,单次检索局限。 | 系统复杂性高,性能开销大,代理设计与调试困难,可控性与透明度挑战。 |
从上表可以看出,RAG和Agent RAG并非相互替代的关系,而是演进和增强的关系。Agent RAG在RAG的基础上,通过引入AI代理,解决了传统RAG在处理复杂任务、多源信息整合和动态决策方面的局限性,将LLM的应用推向了更深层次的智能化和自动化。传统RAG更像是一个“知识助手”,为LLM提供即时的事实支持;而Agent RAG则更像是一个“智能工作流引擎”,能够自主地规划和执行一系列操作,以达成更宏大的目标。
在实际应用中,选择RAG还是Agent RAG,取决于具体的业务需求和任务复杂性。对于简单的问答、内容总结等场景,传统RAG可能已经足够高效且成本可控。而对于需要复杂推理、多工具协作、动态决策的场景,Agent RAG则能提供更强大、更灵活的解决方案。随着AI技术的不断进步,RAG和Agent RAG都将持续演进,为我们带来更多创新和可能。
四、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。