多模态系列-综述MM-LLMs: Recent Advances in MultiModal Large Language Models

本文综述了多模态大型语言模型(MM-LLMs)的最新进展,涵盖模型架构、训练流程、现状及发展趋势。研究发现,MM-LLMs正从多模态理解转向模态生成和跨模态转换能力的提升,同时通过强化学习和高质量数据进行优化。未来方向包括拓展更多模态、提高模型通用性和数据集质量,以及解决具身智能、轻量化部署和幻觉现象等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Homepage:https://mm-llms.github.io/

Paper: https://arxiv.org/abs/2401.13601

1 摘要

在过去的一年中,多模态大型语言模型(MM-LLMs)取得了实质性的进展,通过高效的训练策略,增强了现成的语言模型,以支持多模态输入或输出。由此产生的模型不仅保留了语言模型的固有推理和决策能力,还赋予了多样化的多模态任务。在本文中,我们提供了一份旨在促进进一步研究多模态大型语言模型的综合调查。首先,我们概述了模型架构和训练流程的一般设计公式。随后,我们介绍了一个包含122个多模态大型语言模型的分类体系,每个模型都具有其特定的公式。此外,我们回顾了选定多模态大型语言模型在主流基准测试上的性能,并总结了关键的训练方法,以增强多模态大型语言模型的效力。最后,我们探讨了多模态大型语言模型的前景,并同时维护一个实时跟踪网站(https://mm-llms.github.io),以追踪该领域的最新发展。

2 架构

### 跨域学习的多模态大模型 #### 多模态大语言模型的发展趋势 近年来,随着人工智能领域内数据量的增长和技术的进步,多模态大型语言模型(MM-LLMs)得到了快速发展。这些模型能够处理来自不同源的数据并融合多种类型的输入,如文本、图像和音频等[^1]。 #### 技术挑战与解决方案 构建有效的跨域学习架构面临诸多挑战,其中包括但不限于如何有效地表示异构信息以及设计可以适应新任务而无需重新训练整个系统的机制。针对这些问题的研究提出了各种方法论上的改进措施,在保持原有性能的同时扩展到新的应用场景中去[^2]。 #### 实现案例分析 具体来说,《Attentive Multiview Text Representation for Differential Diagnosis》一文中介绍了一种用于差异诊断的方法,该方法通过引入注意力机制来增强对于不同类型视图间关系的理解能力;而在《MM-LLms:Recent Advances in MultiModal Large Language Models》则总结了一些最新的进展成果,并讨论了未来可能发展的方向。 ```python # Python代码示例:加载预训练好的多模态模型(假设使用transformers库) from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") text_input = "example sentence" image_path = "./path_to_image.jpg" inputs = tokenizer(text_input, return_tensors="pt") outputs = model(**inputs) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CV温故知新

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值