自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(988)
  • 收藏
  • 关注

原创 基于深度学习的无人机航拍图像目标识别系统

摘要:本研究基于深度学习技术开发了一套无人机航拍图像目标识别系统。通过卷积神经网络(CNN)构建目标识别模型,结合YOLO等深度学习框架优化检测性能。系统采用PyQt开发图形界面,实现图像上传、目标检测和结果展示功能。研究重点解决了航拍图像中目标尺度变化大、背景复杂等技术难题,通过数据增强和模型优化提高了识别准确率。实验表明,该系统能有效识别航拍图像中的车辆、建筑等目标,为无人机自动化监测提供了高效解决方案。该系统可应用于城市规划、环境监测等领域,具有重要的实用价值。

2025-07-30 17:24:51 801

原创 基于深度学习的心电图智能识别系统

本研究提出了一种基于深度学习的心电图智能识别系统,旨在通过卷积神经网络(CNN)实现心电图的自动化分类与诊断。系统采用四模块架构:数据预处理、深度学习模型、图像识别和用户交互模块。研究首先对心电图数据进行标准化处理和增强,然后构建CNN模型进行训练优化,最终开发出集成图像处理、模型推理和结果展示的完整系统。实验结果表明,该系统能有效识别心电图异常,准确率达90%以上,显著提高了诊断效率和准确性。该系统可广泛应用于医院临床辅助诊断和远程医疗领域,具有重要的临床应用价值。

2025-07-30 17:12:42 9

原创 基于Bi-LSTM和自注意力机制的恶意代码检测系统研究

摘要:本研究提出一种基于Bi-LSTM和自注意力机制的恶意代码检测系统,针对当前传统检测方法在新型恶意软件识别上的不足。系统采用多模态特征提取方法,结合双向LSTM捕捉时序特征,并引入自注意力机制增强关键特征关注。实验表明,该方法在准确率、召回率和F1-score等指标上优于传统方法,并实现了实时检测需求。创新性地采用多尺度特征提取和层级注意力机制设计,有效提升了模型对混淆代码的识别能力。通过TensorRT优化,推理速度提升3倍,模型体积减小40%,为工业应用提供了高效的恶意代码检测解决方案。

2025-07-26 15:30:00 856

原创 基于pyqt的机场安检管制物品智能识别系统

本文提出了一种基于深度学习的机场安检智能识别系统,旨在解决传统安检效率低、误检漏检率高的问题。系统采用YOLOv5目标检测算法,结合注意力机制提升小物品识别准确率,通过PyQt5实现图形化界面,支持图片/视频上传、实时检测和结果可视化。研究内容包括系统架构设计、算法优化、视频流处理和用户管理模块开发,预期实现95%以上的识别准确率和200ms内的实时处理速度。与国内外现有技术相比,本系统在多模态数据融合、实时性优化等方面具有创新性,可为智慧机场建设提供技术支持。核心代码展示了用户管理、AI检测和结果存储等关

2025-07-26 10:30:00 1134

原创 基于深度学习的视网膜图像血管分割算法研究与实现

本研究提出了一种基于改进U-Net的视网膜血管分割算法,通过结合ResNet骨干网络、注意力机制和深度监督技术,实现对细小血管的精确分割。算法采用混合损失函数(BCE+Dice)解决类别不平衡问题,在DRIVE数据集上取得了Dice系数0.82、IoU 0.72的性能。实验结果表明,该方法相比传统分割算法和基础U-Net具有明显优势,能为眼科疾病诊断提供可靠的计算机辅助分析。研究还详细介绍了数据预处理、模型训练和评估的完整实现流程,为医学图像分割领域提供了可复现的技术方案。

2025-07-25 14:39:42 1040

原创 基于YOLOv8与DeepSort的多目标车辆跟踪系统设计与实现

本文设计并实现了一个基于YOLOv8与DeepSort的多目标车辆跟踪系统。系统采用模块化架构,通过YOLOv8实现高效车辆检测,DeepSort算法完成目标关联与跟踪。针对交通场景特点,系统优化了轨迹可视化、越线计数等功能,并支持GPU加速以提升实时性。实验结果表明,该系统在城市道路和高速公路场景下均能实现准确稳定的车辆跟踪。核心代码实现了完整的处理流程,包括目标检测、特征提取、轨迹匹配与可视化等模块,为智能交通监控提供了有效的技术方案。

2025-07-25 10:45:00 884

原创 基于改进粒子群算法的多无人机协同航迹规划系统设计与实现

摘要:本研究提出一种基于改进粒子群算法(PSO)的多无人机协同航迹规划系统。针对复杂动态环境下的多无人机协同作业问题,通过引入动态惯性权重机制和自适应加速常数,优化传统PSO算法的性能。系统构建三维环境模型,综合考虑路径长度、避障约束和无人机间安全距离等多目标优化,实现了高效协同航迹规划。实验采用MATLAB和Gazebo仿真平台验证,结果表明改进算法能有效解决动态环境中的路径冲突问题,提升无人机集群作业效率。系统通过参数化配置支持不同任务场景,为无人机群体智能决策提供技术支撑。

2025-07-24 12:19:41 715

原创 基于改进粒子群优化算法的UAV三维路径规划系统设计与实现

传统的路径规划方法,如A*算法、Dijkstra算法、RRT(快速随机树)等,虽然在某些场景中表现良好,但普遍存在计算效率低、难以处理高维复杂环境等问题。为此,越来越多的研究转向了启发式智能算法,尤其是粒子群优化(Particle Swarm Optimization, PSO)算法。PSO算法以其结构简单、参数少、全局搜索能力强等优点被广泛应用于路径规划领域。然而,标准PSO在高维、多障碍、动态环境中常常出现收敛速度慢、陷入局部最优等问题。因此,设计一种改进的PSO算法,并构建一个完整的UAV三维路径

2025-07-24 10:30:00 943

原创 基于PyQt的深度学习船舶标识号智能识别系统

本文提出了一种基于PyQt和深度学习的船舶标识号智能识别系统,旨在解决港口管理中人工识别效率低、易出错的问题。系统采用CRNN(卷积循环神经网络)模型,结合CNN特征提取和LSTM序列建模能力,实现复杂背景下船舶标识号的自动识别。通过PyQt框架开发图形化界面,支持图像加载、预处理、识别及结果显示功能。关键技术包括:1)构建专用船舶标识号数据集并进行数据增强;2)优化CRNN模型结构,确保识别准确率超过95%;3)设计高效的图像预处理流程,处理倾斜、光照不均等干扰。实验表明,系统单图识别时间小于1秒,满足港

2025-07-23 14:08:57 523

原创 基于机器学习的电梯故障智能检测系统设计与实现

随着城市化发展和高层建筑的普及,电梯已成为人们日常生活中不可或缺的重要交通工具。电梯运行的安全性与稳定性直接关系到用户生命财产安全。然而,传统的电梯维护模式大多依赖人工巡检,存在检测滞后、效率低、故障预测能力差等问题。近年来,随着物联网技术和人工智能的发展,越来越多的智能维护手段被引入电梯故障诊断领域。尤其是机器学习算法,在故障识别、异常检测和预测性维护方面表现出良好的应用前景。通过对电梯运行状态数据进行建模分析,可以实现对电梯故障的早期预警和智能诊断,极大提升运维效率与安全性。

2025-07-23 13:52:34 461

原创 基于CNN-LSTM混合架构的住宅用电量智能预测系统设计与实现

摘要:本研究针对住宅用电量预测问题,提出一种基于CNN-LSTM混合架构的智能预测系统。通过融合CNN局部特征提取能力和LSTM时序建模优势,有效解决传统方法在非线性时序预测中的不足。研究采用UCI家用电力数据集,设计包含数据预处理、特征工程、混合模型构建等完整流程。实验表明,该模型在72小时历史数据预测未来24小时用电量任务中,MAE和RMSE指标显著优于传统方法。创新点包括多维特征融合、动态学习率优化以及可解释性增强。系统实现为电力调度和智能家居提供精准预测工具,对提升能源管理效率具有重要实践价值。

2025-07-17 14:51:00 19

原创 基于改进RNN的心血管疾病早期预测系统研究与实现

摘要:本研究提出一种基于改进RNN的心血管疾病预测方法,通过引入双向RNN和注意力机制,提高模型对时序医学数据的特征提取能力。研究采用UCI心脏病数据集,经过数据预处理和特征工程后,构建了包含注意力层的双向RNN模型。实验结果表明,该方法在准确率、AUC等指标上优于传统机器学习方法,同时通过SHAP值分析增强了模型可解释性。该系统可辅助医生进行早期风险筛查,对降低心血管疾病发病率和死亡率具有重要临床价值。

2025-07-17 14:40:18 793

原创 基于pyqt的深度学习的水体颜色水质智能检测系统

本课题旨在研究基于深度学习与计算机视觉技术的水体颜色水质智能检测系统。通过使用现代图像处理技术,结合深度学习模型,能够实现对水质的快速检测和分类。该系统不仅能够为水资源保护和水质评估提供及时的信息支持,还能为政府及环保部门提供便捷、高效的监测工具,具有重要的社会价值和应用前景。

2025-07-16 14:14:36 300

原创 基于PyQt与深度学习的聋哑人手语智能识别系统

基于PyQt与深度学习的聋哑人手语智能识别系统研究 本研究开发了一套融合PyQt图形界面与深度学习技术的手语识别系统,旨在解决聋哑人与健听人群的沟通障碍问题。系统采用ResNet18模型进行迁移学习,结合MediaPipe手部检测技术,实现了对26个字母手势的高效识别。关键技术包括:1)基于CNN的深度学习模型优化;2)图像预处理与ROI提取;3)PyQt5多模态交互界面开发。系统支持图片、视频及实时摄像头三种输入方式,单帧识别时间<200ms,识别准确率达85%以上。创新点在于将传统图像处理与深度学

2025-07-16 14:01:42 778

原创 抗逆向分析的PE文件保护技术研究与实现

本文研究了一种面向Windows PE文件的多重保护系统,旨在提高软件抗逆向分析能力。系统集成反调试、导入表隐藏、代码混淆和加壳四项核心技术:通过组合多种检测方法(如IsDebuggerPresent、硬件断点检测)实现反调试;采用动态API加载机制隐藏导入表;运用指令替换、控制流扁平化等技术进行代码混淆;结合压缩加密算法构建自定义加壳方案。基于Python实现的原型系统可自动化处理PE文件保护流程,测试表明能有效抵抗静态分析工具(如IDA Pro)和动态调试器(x64dbg)的攻击,仅增加约200ms启动

2025-07-15 15:16:06 1211

原创 基于Python的非对称加密与对称加密相结合的文件传输系统设计与实现

摘要:本文设计并实现了一个基于Python的混合加密文件传输系统,结合RSA非对称加密和AES对称加密的优势,解决了网络文件传输中的安全问题。系统采用RSA进行密钥交换和身份验证,AES加密文件内容,实现高效安全的传输。通过Socket网络编程实现客户端-服务端通信,并使用Tkinter开发了图形化界面。系统包含密钥管理、文件加密传输和GUI三大模块,支持跨平台使用,具有操作简便、安全性高等特点,适用于教育、企业等多种场景。该设计为密码学理论应用提供了实践案例,具有教学和研究价值。

2025-07-15 14:34:55 1195

原创 基于深度学习的农作物种子智能识别系统

本研究提出基于深度学习的农作物种子智能识别系统,旨在解决传统识别方法效率低、准确性差等问题。系统采用改进的卷积神经网络架构(如ResNet、EfficientNet),结合注意力机制和多尺度特征融合技术提升识别精度。关键技术包括数据增强、迁移学习、模型轻量化等,可有效应对样本不足、相似品种识别难等挑战。实验表明,系统识别准确率达90%以上,显著优于传统方法。该研究为农业现代化提供技术支持,具有提升种子检测效率、推动智慧农业发展等重要应用价值。

2025-07-14 15:17:58 594

原创 基于深度学习的家禽识别系统设计与实现

本文提出了一种基于深度学习的家禽识别系统,采用YOLOv5目标检测和ResNet18图像分类相结合的技术方案。系统通过数据增强、模型微调等技术手段,实现了鸡、鸭、鹅等家禽的自动识别与分类,准确率达90%以上。该系统可有效降低养殖业人工成本,提升管理效率,推动农业智能化转型。研究包含完整的系统架构设计、核心算法实现和性能评估,为智慧农业提供了可行的技术解决方案。

2025-07-14 14:53:10 154

原创 基于PyQt和深度学习的海洋鱼类智能识别系统

本文摘要: 本研究设计并实现基于PyQt和深度学习的海洋鱼类智能识别系统。系统采用卷积神经网络(CNN)模型进行鱼类图像分类,结合迁移学习技术优化识别性能。研究内容包括:1)构建海洋鱼类图像数据集并进行预处理;2)训练并优化深度学习模型;3)开发PyQt图形界面实现图像上传与识别功能。系统测试表明,该方法能有效提升鱼类识别效率与准确率,为海洋生态研究和渔业管理提供智能化解决方案。关键技术包括TensorFlow/PyTorch框架、MobileNetV2网络结构以及PyQt5界面开发。

2025-07-01 15:58:55 667

原创 基于PyQt的淡水鱼类智能识别系统

本文介绍了一个基于PyQt和深度学习的淡水鱼类智能识别系统开发方案。该系统采用卷积神经网络(CNN)构建识别模型,结合PyQt开发图形界面,实现了图像上传、视频检测、模型训练等功能模块。通过迁移学习技术优化模型性能,准确率可达90%以上。系统特色包括:1)集成深度学习与GUI界面,简化用户操作;2)支持多种预训练模型选择;3)提供数据增强和可视化分析功能。开发流程涵盖数据集准备、模型训练、界面开发、系统集成等阶段,最终实现了一个可应用于生态监测、水产养殖等领域的智能识别系统。

2025-07-01 15:47:06 940

原创 基于深度学习的快递包裹智能识别系统

摘要: 本研究旨在开发基于深度学习的快递包裹智能识别系统,解决传统人工处理效率低、错误率高的问题。系统采用YOLOv5算法进行目标检测,定位包裹关键区域(如条形码、地址等),结合Tesseract OCR技术提取文本信息(收件人、电话等)。技术路线涵盖数据预处理、模型训练、信息提取及系统集成,最终实现批量图像处理和实时识别功能。实验表明,该系统能有效提升物流效率,降低人工成本,推动物流智能化转型。核心代码包括数据预处理、目标检测、OCR信息提取及可视化展示模块,验证了方案的可行性和实用性。

2025-06-29 13:58:48 613

原创 基于opencv的车距智能检测系统

摘要:本研究设计了一种基于OpenCV和YOLOv3的低成本车距检测系统,通过单目视觉技术实现车辆检测、跟踪与距离估算。系统采用模块化架构,包含视频预处理、目标检测、质心跟踪、单目测距和安全预警五个核心模块。通过相似三角形原理计算车辆间距,结合三级预警机制(安全/警告/危险)提供实时安全提示。实验结果表明,该系统在1080p分辨率下可实现15-20FPS的处理速度,平均测距误差小于10%,具有成本低、实时性好的特点,适用于普通车辆的辅助驾驶安全应用。主要创新点在于融合深度学习检测与传统计算机视觉方法,实现无

2025-06-29 13:55:33 916

原创 基于深度学习的戴眼镜识别系统的设计与实现

摘要:本研究针对眼镜识别这一计算机视觉重要课题,提出基于轻量化卷积神经网络的解决方案。通过整合公开数据集与自建数据,采用改进的MobileNetV3网络架构,结合注意力机制和金字塔特征融合技术,有效提升了识别精度与实时性。系统实现包含数据预处理、模型训练、实时检测全流程,在测试集上达到88%准确率,处理速度达15FPS。研究解决了眼镜遮挡对人脸识别的影响,为安防、医疗、零售等场景提供技术支持,同时探索了模型轻量化与移动端部署的优化路径。

2025-06-29 13:35:31 814

原创 基于NSL-KDD数据集的LSTM与自编码器入侵检测系统研究与实现

摘要:基于NSL-KDD数据集,本研究采用LSTM和自编码器两种深度学习方法构建入侵检测系统。通过数据预处理、特征工程和模型训练,对比分析两种模型在检测DoS、Probe等网络攻击的性能表现。研究内容包括数据集可视化分析、模型构建与优化、评估指标对比(准确率、召回率等),并使用Pyecharts实现动态可视化。预期成果包括完整的检测系统实现、性能优化策略及交互式分析报告,为网络安全防护提供新的技术参考。研究周期为12周,涵盖数据处理、模型训练、对比分析和成果撰写等阶段。

2025-06-25 16:06:57 1297

原创 基于深度学习的日志异常检测

本项目旨在开发基于LSTM深度学习的日志异常检测系统,实现日志数据的自动化分析和异常识别。系统包含日志解析、数据预处理、模型训练和异常检测四大模块,通过将日志转化为token序列并构建LSTM模型,实现对系统故障和安全漏洞的自动检测。采用TensorFlow框架搭建模型,使用Adam优化器进行训练,具有实时监控和报警功能。项目预期8周完成,最终形成完整的日志分析解决方案,可显著提升日志处理效率,减少人工干预。系统架构清晰,包含数据目录、工具函数和训练/检测脚本,配套完整的代码实现和依赖管理。

2025-06-25 14:45:56 509

原创 基于深度学习的番茄成熟度智能检测系统

随着人工智能技术的快速发展,深度学习方法已经成为计算机视觉领域的重要工具。在农业领域,智能化的作物检测系统正逐步替代传统的人工检测方式,提高作物生产效率和质量。番茄作为一种重要的农作物,成熟度的判断是决定收获时间和质量的关键因素。传统的人工判断方法不仅效率低下,而且主观性强,容易受到气候、环境等因素的影响,导致评估结果的不准确。因此,基于深度学习的番茄成熟度智能检测系统能够帮助农民快速、准确地判断番茄的成熟度,进而提高农业生产的自动化水平,并为农产品的质量控制提供支持。通过计算机视觉和深度学习技术,本课

2025-06-24 15:06:41 1251

原创 基于深度学习的番茄叶片病害分类系统的设计与实现

本文提出了一种基于深度学习的番茄叶片病害分类系统。针对番茄种植中病害严重影响产量的问题,研究采用卷积神经网络(CNN)技术实现自动化病害识别。系统设计包括:1)采集标注番茄叶片图像数据集并进行数据增强;2)选择ResNet、VGG等预训练模型进行迁移学习;3)开发包含前端图像上传和后端分类预测的Web应用。实验表明,该系统能准确识别10种常见番茄叶片病害,为农业生产提供高效的病害诊断方案。关键技术包括数据预处理、模型微调和性能优化,最终部署为实用的农业辅助工具。

2025-06-24 14:55:59 853

原创 基于yolov8的宠物牵绳智能检测系统

近年来,随着宠物养护和管理需求的不断增加,宠物行业逐渐走向智能化。然而,很多宠物在外出时未能佩戴牵引绳,或者由于主人疏忽导致宠物离开主人视线范围,从而引发了一系列安全问题。为了提高宠物外出时的安全性和规范性,本项目旨在开发一套基于计算机视觉的宠物牵绳检测系统。本项目将在YOLOv8检测算法的基础上,结合目标跟踪和违规检测等技术,实现对宠物牵绳的精准检测。本项目的主要目标是开发一款宠物牵绳检测系统,利用计算机视觉技术,检测宠物是否佩戴牵引绳,识别违规行为,并为主人提供安全警示。

2025-06-16 17:42:29 627

原创 【基于python+Django的协同过滤旅游推荐可视化分析-哔哩哔哩】 https://b23.tv/atxhqka

【基于python+Django的协同过滤旅游推荐可视化分析-哔哩哔哩】 https://b23.tv/atxhqka。

2025-06-16 09:11:46 88

原创 信息安全课设--基于AES的通信加密系统

随着互联网和信息技术的发展,数据的安全性问题越来越受到重视。数据加密技术作为保护信息安全的一种重要手段,广泛应用于各种通信系统中。AES(高级加密标准)是当前最为常见的对称加密算法之一,广泛应用于各种安全通信协议中。本课设的目标是设计并实现一个基于Python的AES加密通信系统,利用AES算法对传输的数据进行加密和解密,确保信息在传输过程中的保密性。本报告将详细介绍该AES加密通信系统的设计与实现过程,包括系统功能、实现步骤、代码说明以及测试与实验结果。

2025-06-14 11:11:38 997

原创 基于DeepLabV3+的高分辨率医学图像语义分割算法研究

因此,将DeepLabV3+模型引入医学图像领域,开展相关改进研究,不仅可以提高医学影像处理的自动化与精度,还有助于临床决策的精确化和快速化。然而,传统的医学图像分析方法往往需要大量人工干预,难以高效、精确地处理日益增长的医学影像数据。国内方面,医学图像分割研究也呈现快速增长趋势,多个高校及科研机构已经利用DeepLabV3+模型开展相关研究,并取得了一定的进展。但总体而言,现有研究在针对医学图像特殊性进行模型结构、损失函数和数据增强技术的个性化调整方面仍存在不足,模型的临床适用性和泛化性能仍需提升。

2025-06-14 11:10:19 585

原创 基于DeepLabV3+的高分辨率遥感图像语义分割算法研究

然而,由于高分辨率遥感图像中的地物信息复杂,包含各种尺度、形状和材质的目标,传统的像元级分类方法和浅层图像分析技术在处理这些图像时面临较大的困难。DeepLabV3+作为一种基于深度卷积神经网络的语义分割模型,通过引入空洞卷积(Atrous Convolution)和空间金字塔池化(ASPP)等技术,显著提升了分割精度,已在多个计算机视觉任务中取得了优秀的表现。本研究的目标是通过对DeepLabV3+模型的改进,提升其在高分辨率遥感图像中的分割精度,为遥感图像的智能化分析提供更加高效和精准的技术方案。

2025-06-13 16:10:22 869

原创 基于机器学习的 WebShell 入侵检测系统设计与实现

本系统是一个轻量级的 WebShell 检测方案,适合用作毕业设计、网络安全实验、或企业初步接入的静态检测模块。你可以在此基础上逐步扩展为更复杂的动态检测系统。

2025-06-13 10:05:45 940

原创 基于springboot的实验室管理系统全套(源码+万字LW+答辩PPT)

本文基于JSP技术和MySQL数据库设计开发了一个实验室管理系统,旨在满足用户对实验室资源的高效管理需求。系统采用Spring Boot框架,实现了管理员和用户两大功能模块:管理员可进行实验室、设备、用户等综合管理;用户可完成申请、报备、领取等操作。通过详细的需求分析、系统设计和功能测试,验证了该系统在经济和技术上的可行性,提高了实验室管理效率,为用户提供了便捷的操作体验。系统测试表明各项功能运行正常,具有良好的实用性和用户体验。

2025-06-12 17:16:48 828

原创 Java毕设全套--基于springboot的自习室预定管理系统

本文设计并实现了一个基于Java和SpringBoot框架的自习室预订管理系统。系统采用B/S架构,使用MySQL数据库和Eclipse开发环境,主要功能包括管理员模块(学生管理、公告管理、座位预订等)、学生模块(预约管理、留言反馈)以及前台首页展示模块。研究背景分析了传统线下模式的不足,指出在线预订系统在提升管理效率和用户体验方面的重要性。系统开发目标聚焦于实现信息管理自动化、简化操作流程、提高处理效率,并注重界面友好性。测试结果表明系统运行稳定,功能完善,有效满足了学生自习室预约需求和管理需求。该系统为

2025-06-12 11:42:59 789

原创 Java毕设全套--基于springboot的零食购物商城系统

摘要:本文设计开发了一个基于SpringBoot框架的闲一品零食交易平台管理系统。系统采用B/S架构,结合Java技术和MySQL数据库,实现了管理员、用户和前台三大功能模块。管理员可进行用户管理、商品分类管理等操作;用户可查看订单、评价商品等;前台提供商品展示、购物车等功能。系统开发遵循软件工程原则,具有良好的可扩展性和可维护性。测试结果表明系统运行稳定,能满足日常交易管理需求,为类似电商平台的开发提供了参考。该系统有效提升了零食交易的便捷性和管理效率。 关键词:电商平台;SpringBoot;MySQL

2025-06-11 15:08:53 691

原创 基于深度学习的钓鱼网站检测系统

随着互联网应用的普及,钓鱼网站成为网络安全的主要威胁之一。攻击者通过伪造仿真页面骗取用户敏感信息(如账号密码、银行信息等),其危害性呈逐年上升趋势。据统计,2023年全球约有370万起钓鱼攻击事件,造成超过200亿美元损失。传统检测方式依赖黑名单与规则匹配,存在更新滞后与泛化能力弱等问题。因此,亟需一种高效、自动化、智能化的钓鱼网站识别技术,提升安全防护能力。本课题旨在构建一个基于深度学习的钓鱼网站检测系统,能够自动提取URL及网页行为特征,通过模型识别潜在钓鱼风险,从而实现快速、高准确率的检测。

2025-06-11 13:33:04 1378

原创 【嵌入式系统】基于单片机的MP3播放器设计:硬件电路与软件算法实现音乐播放和信息显示

内容概要:本文介绍了基于单片机的MP3播放器设计,详细阐述了系统的背景、意义、总体方案及各硬件模块(单片机主控模块、LCD显示电路模块、按键电路模块、声音播放电路模块)的设计原理与实现方法。软件设计部分涵盖初始化程序、主程序流程、按键子函数及歌曲播放子函数,确保系统能够正确响应用户操作并播放音乐。③理解单片机编程的基本流程与技巧,特别是针对音频播放的应用。阅读建议:本文结合硬件电路与软件编程,建议读者在阅读过程中可以尝试搭建简单的单片机开发环境,跟随文中步骤进行实践操作,同时查阅相关单片机资料加深理解。

2025-05-11 20:20:21 40

原创 基于单片机的微型电动车电机测速与PWM-PID调速系统设计

内容概要:本文详细介绍了基于单片机的电动车电机调速系统的设计与研究,旨在提高微型电动车电机测速精度及调速响应。文章首先探讨了三种常见的电机测速方法(测速发电机、对射式光电传感器和霍尔传感器),并选择了霍尔传感器作为测速工具,因其性能稳定、精度高且性价比高。通过硬件设计、软件编程及MATLAB仿真,验证了该系统的有效性。结论表明,该系统具有快速响应、抗干扰能力强的特点,为电动车的微型化、智能化发展提供了参考。此外,文中还讨论了不同测速方法的优缺点,为选择合适的测速工具提供了参考。

2025-05-11 20:18:13 78

原创 基于单片机的交通信号灯模拟演示平台设计

该平台旨在模拟实际交通信号灯的功能,特别是凯里高铁南站十字路口的交通信号灯。硬件部分以STC89C52RC单片机为核心,配合晶振电路、复位电路、矩阵按键控制电路、数据缓冲电路、数码管刷新电路等外设,实现了交通信号灯的显示与倒计时功能。软件设计采用C语言编程,包括主程序和中断程序,完成了系统的初始化、定时判断、显示数据刷新、按键扫描等功能。其他说明:该设计不仅展示了单片机在交通信号控制中的应用,还强调了从生活中发现问题、解决问题的教育理念,鼓励学生将所学知识应用于实际项目中,进一步提升其综合素养。

2025-05-11 20:16:01 58

【物联网安全】基于特征波动的IoT异常流量检测方法:提升跨数据集模型泛化能力和检测准确度

内容概要:本文提出了一种基于特征波动的IoT异常流量检测方法,旨在解决现有方法在不同场景下特征差异大导致的特征信息丢失问题。该方法通过引入Wave Robust EMD距离,改进了特征提取的鲁棒性和稳定性,使模型在跨数据集场景下仍能保持良好的检测性能。具体来说,该方法首先构造了一个新的异常流量数据集,随后提出了基于滑动窗口的异常指数和异常等级计算方法,最后通过多种传统异常检测模型对该方法进行了评估。实验结果显示,基于WREMD距离的特征提取方法在多个模型上的平均准确率达到了85%以上,特别是在神经网络和GLM模型上的准确率接近97%。 适合人群:从事物联网安全研究的技术人员、安全工程师、机器学习研究人员,以及对异常流量检测感兴趣的学者和学生。 使用场景及目标:①适用于物联网环境中,尤其是需要实时监测和检测异常流量的场景;②帮助研究人员和工程师提高异常流量检测模型的泛化能力和鲁棒性;③为物联网安全提供一种有效的检测手段,提升网络安全水平。 其他说明:本文强调了在不同数据集之间的模型泛化能力问题,指出传统方法在实际部署时性能下降的原因,并通过实验验证了所提方法的有效性。此外,该方法不仅提高了检测准确率,还增强了模型对未知攻击类型的识别能力。建议读者关注特征波动在不同模型中的表现差异,并结合实际应用场景选择合适的特征提取方法。

2025-05-10

### 电气工程基于单片机的直流电机调速系统设计:硬件与软件保护机制及应用

内容概要:本文探讨了基于单片机的直流电机调速系统设计,旨在简化结构、降低成本并提升系统的可靠性和灵活性。文中详细介绍了该系统的硬件设计,包括使用AVR单片机mega16作为中央控制单元,输入通道通过转速传感器和光电隔离电路采集转速信号,输出通道利用光电隔离电路和调压模块控制电机转速。此外,文章还讨论了转速负反馈闭环调速系统的工作原理及其软件保护机制,如回路断线保护、回路异常保护、超速保护和过流截止型保护。最后,文章总结了该系统的优势,指出其适用于稳定负荷条件下的生产单位和实训室,并强调了单片机在直流电机调速系统中的重要性。 适合人群:从事电机控制、自动化控制领域的工程师和技术人员,以及对单片机应用感兴趣的科研人员和学生。 使用场景及目标:①适用于工业自动化、交通运输等领域的直流电机调速控制;②为生产单位和实训室提供稳定可靠的转速自动控制系统;③帮助研究人员深入了解单片机在直流电机调速系统中的应用。 其他说明:该系统不仅能够简化直流电机调速系统的结构,降低成本,还能增强系统的可靠性和灵活性。文中提到的具体保护措施和闭环控制机制为实际应用提供了宝贵的参考依据。此外,文中还引用了多篇相关文献,进一步支持了该设计的可行性和先进性。

2025-05-10

电子论文基于51单片机的光感声感辅助冲便器设计

内容概要:本文介绍了一种基于51单片机的光感和声感辅助冲便器装置,旨在减少公共厕所和居民楼中手动冲便的不便,提升公共卫生环境。该装置使用STC89C52单片机作为微控制器,结合热释电人体红外传感器和菲涅尔透镜,将人体红外信号转换为电信号,通过达林顿管驱动电机实现自动冲便。此外,装置还配备了声控提醒功能,提示使用者冲水,若无人响应则自动启动冲水机制。; 适合人群:对单片机技术、传感器应用及自动化控制系统感兴趣的电子工程师、科研人员及高校相关专业师生。; 使用场景及目标:①适用于经济欠发达地区公共厕所和居民楼老旧冲便器的改造;②降低更换新感应冲便器的成本;③提高公共卫生间的卫生水平和人们的自律意识。; 其他说明:该装置设计简单、结构稳定、经济实用,具有较强的推广价值。硬件实现部分为数模混合电路设计,需注意PCB板布线布局及抗干扰措施。软件设计采用C语言编程,重点在于单片机控制逻辑和信号处理算法的实现。

2025-05-10

轻量级的 域名威胁情报采集与恶意检测 脚本.zip

系统类型 定位:轻量级的 域名威胁情报采集与恶意检测 脚本 形态:纯 Python CLI(控制台程序),≈ 300 行代码即可跑通 目标:给安全研究/应急响应人员一个「输入域名 → 拿到关联域名 → 自动判恶意 → 输出报表」的快速流水线 已实现的核心功能 流程阶段 具体功能 代码位置 1. 输入域名 - 支持直接在命令行传多个域名 - 或用 --file 从文本文件批量读取 cli() 前半段 2. 查询关联域名 - 默认调用 viewdns.info 的 /related API(需自备 --api-key) - 返回“高度关联域名”列表 fetch_related_domains() 3. 抓取网页正文 - 对原始域名 + 关联域名逐一访问主页 - 用 BeautifulSoup 去脚本/样式,仅保留纯文本 fetch_page_text() 4. 恶意检测(多策略) 1. TF-IDF → 线性 SVM(可加载自己的 .pkl) 2. 若无模型则用“高危关键词启发式”示范 预留接口可扩展到 Embedding 相似度、截图 CNN TextSVMPredictor 5. 结果落盘 - 将「域名、是否恶意」写入 CSV(默认 results.csv) pandas.to_csv 6. 统计可视化 - 用 rich 在终端输出彩色表格 - 汇总恶意域名总数与占比 summarise() 7. 速率控制 & 异常处理 - 每次请求间隔 0.5 秒,防止 API / 目标站封锁 - 捕获网络/解析异常并打印友好警告 主循环 & 各函数 try/except

2025-04-26

全国近几年主要城市空气质量数据集(数据量大概44029条)

这个数据集包含了有关空气质量的信息,以下是数据字段的详细解析: 1. 数据列解析: 城市:记录了空气质量数据的城市,例如“北京”。 城市链接:城市的链接地址,用于跳转到具体城市的空气质量页面。 年月:记录数据的年月,例如“2024年1月”。 年月链接:对应的月份链接地址,用于访问该月的空气质量数据页面。 日期:记录具体的日期,例如“2024/1/1”。 质量等级:空气质量的等级,可能包括“良”和“优”。 AQI指数:空气质量指数(AQI),该数值越高,表示空气质量越差。 当天AQI排名:当天该城市的 AQI 排名,反映城市空气质量在当天的相对位置。 PM2.5:PM2.5 浓度(小于 2.5 微米的颗粒物),通常被认为是影响空气质量的重要因素之一。 PM10:PM10 浓度(小于 10 微米的颗粒物),与 PM2.5 类似,较大的颗粒物。 So2:二氧化硫浓度,是空气污染物之一,通常与燃煤相关。 No2:二氧化氮浓度,是空气中的一种污染物,来自机动车排放和工业。 Co:一氧化碳浓度,通常与交通和工业排放有关。 O3:臭氧浓度,在某些条件下,臭氧也是空气污染的源之一。 2. 数据特点: 时间跨度:数据集包含了2023年12月和2024年1月的数据。 空气质量数据:通过 AQI、PM2.5、PM10、So2、No2、Co 和 O3 等指标反映了不同时间段内空气质量的变化。 质量等级:每个日期都有一个对应的空气质量等级(“良”或“优”)。 3. 数据分析方向: 空气质量波动分析: 分析不同日期的 AQI指数 变化情况,查看空气质量的波动,是否存在季节性或突发的污染事件。 比较 PM2.5、PM10、So2、No2、Co 和 O3 等污染物的浓度,判断哪些污染物对 AQI 指数的贡献最大。 空气质量等级与污染物关系: 根据每个日期的质量等级(“良”或“优”),分析不同污染物的浓度

2025-04-21

基于hadoop的电商用户行为分析数据集,数据量大概6-7万条

该数据集包含有关用户类型、消费行为、广告来源、浏览类别以及浏览频率的多个字段。以下是字段和内容的详细分析: 1. 数据列分析: 用户类型:标识用户的分类,可能包括“老用户”或“新用户”。 活跃类型:表示用户的活跃度,可能分为“活跃用户”和“非活跃用户”。 省份:用户所在的省份,例如“安徽”、“辽宁”、“天津”等。 消费等级:用户的消费水平,可能按“1级”到“5级”进行分类。 年龄:用户的年龄段分类,例如“20-30”岁,“31-40”岁等。 referrer:广告来源,指引导用户来到平台的广告类型,如“网页广告”、“短视频推荐”、“游戏广告”等。 浏览category:用户浏览的产品类别,例如“日常生活用品”、“硬件设备”等。 每周平均浏览次数:用户每周平均浏览次数的分类,例如“3次以下”、“5-10次”等。 2. 数据特点: 多维度分类:数据集将用户行为分为多个维度(用户类型、活跃类型、消费等级、年龄等),能够为分析提供丰富的背景信息。 行为与消费偏好分析:数据中的浏览类别和每周平均浏览次数能反映用户的行为偏好,帮助了解他们的消费习惯。 用户活跃度分析:通过“活跃类型”字段,可以分析活跃用户和非活跃用户在不同消费类别和浏览频率上的差异。 3. 数据分析方向: 用户行为分析: 分析不同用户类型(活跃用户与非活跃用户)之间的差异,特别是在浏览产品类别和每周平均浏览次数上的差异。 广告效果分析: 根据“referrer”字段,分析不同广告类型(网页广告、短视频推荐、游戏广告等)对用户浏览类别和活跃度的影响。 消费群体分析: 根据“消费等级”字段,了解高消费用户与低消费用户的浏览偏好、活跃度等,提供针对性的营销策略。 年龄与消费行为的关联: 根据“年龄”字段,分析不同年龄段用户的消费行为差异,帮助优化广告投放。 区域分析: 根据“省份”字

2025-04-21

AirQualityUCI.xlsx 空气质量监测的时间序列数据集 数据量大概9300条

它是一个空气质量监测的时间序列数据集。数据包括不同时间点下的多个污染物和气象因子的浓度。 数据结构分析 列的含义: Date:日期(格式为 YYYY/MM/DD),表示每条记录的日期。 Time:时间(格式为 HH:MM:SS),表示每条记录的时间。 CO(GT):一氧化碳的浓度(可能是传感器输出值)。 PT08.S1(CO):与一氧化碳相关的传感器值。 NMHC(GT):非甲烷碳氢化合物浓度。 C6H6(GT):苯的浓度。 PT08.S2(NMHC):与非甲烷碳氢化合物相关的传感器值。 NOx(GT):氮氧化物的浓度。 PT08.S3(NOx):与氮氧化物相关的传感器值。 NO2(GT):二氧化氮的浓度。 PT08.S4(NO2):与二氧化氮相关的传感器值。 PT08.S5(O3):与臭氧相关的传感器值。 T:温度。 RH:相对湿度。 AH:吸湿性。 数据特点: 时间序列数据:该数据集的时间跨度从 2004 年 3 月 10 日到 2004 年 3 月 11 日,记录了每小时的空气质量数据。这使得它适合用于时间序列分析。 多个污染物浓度:数据集记录了多种污染物(如一氧化碳 CO、氮氧化物 NOx、二氧化氮 NO2 等)的浓度,以及与它们相关的传感器数据。 气象数据:温度、湿度和吸湿性等气象因子也被记录下来,这些可能与污染物浓度的变化有一定关系。 数据问题: 异常值:例如,数据中出现了 -200 的值,可能表示传感器读取错误或缺失数据。需要对这些异常值进行处理。 单位问题:部分污染物的单位不明确,需要确认数据记录的标准和单位。 分析步骤: 数据清洗: 处理缺失值和异常值(如 -200)。 填充缺失数据,或者使用其他方法(例如删除)处理异常数据。 数据可视化: 绘制污染物浓度随时间的变化趋势图。 可视化温度、湿度等气象因子的

2025-04-21

uci空气质量数据集,数据集数量大概9300条,适用于大数据分析空气质量数据分析分析

包含了与空气质量监测相关的数据。每行数据记录了不同时间点的各种空气质量指标。数据集的列包括: 1. 数据集的列解释: Date:日期,表示数据记录的日期。 Time:时间,表示数据记录的时间点。 CO(GT):一氧化碳的浓度(GT 可能表示传感器类型或标记)。 PT08.S1(CO):与 CO(Carbon Monoxide)相关的传感器值。 NMHC(GT):非甲烷碳氢化合物浓度(Non-methane hydrocarbons)。 C6H6(GT):苯(C6H6)浓度。 PT08.S2(NMHC):与非甲烷碳氢化合物(NMHC)相关的传感器值。 NOx(GT):氮氧化物浓度。 PT08.S3(NOx):与氮氧化物(NOx)相关的传感器值。 NO2(GT):二氧化氮浓度。 PT08.S4(NO2):与二氧化氮(NO2)相关的传感器值。 PT08.S5(O3):与臭氧(O3)相关的传感器值。 T:温度。 RH:相对湿度(Relative Humidity)。 AH:吸湿性(Absorption Humidity)。 2. 数据集内容分析: 该数据集记录了多个空气质量传感器在不同时间点的检测值。每个数据点包括了多个空气污染物的浓度信息,如: 一氧化碳(CO) 非甲烷碳氢化合物(NMHC) 苯(C6H6) 氮氧化物(NOx)和二氧化氮(NO2) 臭氧(O3) 同时,每个数据记录还包括了温度(T)、相对湿度(RH)和吸湿性(AH)的信息。对于每个传感器,都会记录其浓度值以及相关的测量设备(如 PT08.S1, PT08.S2 等)。 3. 数据特点: 时间序列数据:数据是基于时间的,记录了特定时间点的空气质量信息,因此这类数据适合用于时间序列分析。 多传感器数据:每种污染物有多个传感器对应的值,如 CO、NMHC、NOx 等的多个传

2025-04-21

基于XGBoost的网络游戏流失玩家预测算法.zip

本项目旨在构建一个基于XGBoost的网络游戏流失玩家预测算法。通过分析玩家的游戏行为数据(如总游戏时长、每月消费金额、游戏次数等特征),预测玩家是否会流失。流失预测是游戏运营中的一个关键任务,能够帮助运营团队识别潜在流失玩家,并采取相应的干预措施,提高玩家留存率。 2. 项目目标 构建一个流失预测模型:利用玩家的历史数据,预测玩家是否流失。 使用XGBoost算法:XGBoost(Extreme Gradient Boosting)是一种高效的梯度提升树模型,广泛应用于二分类任务。 评估模型性能:使用常见的评估指标(如准确率、ROC AUC、分类报告)评估模型效果。 可视化特征重要性:展示模型中各个特征的重要性,帮助理解模型。 3. 系统架构 数据准备:通过随机生成的玩家行为数据集来训练和测试模型。 数据预处理:对数据进行缺失值处理、特征选择和数据拆分。 模型训练与评估:使用XGBoost模型进行训练,并通过准确率、ROC AUC等评估指标对模型进行评估。 输出与可视化:输出评估结果,绘制特征重要性图表。 4. 环境要求 编程语言:Python 3.x 依赖库: pandas:数据处理 numpy:数学计算 xgboost:机器学习模型 scikit-learn:模型评估 matplotlib:可视化

2025-04-15

游戏玩家流失数据集game-player-data.csv

包括游戏时长、消费金额、游戏次数以及流失标签。例如,消费较低或游戏时长较低的玩家更可能流失。

2025-04-15

基于Python控制台的机器学习算法恶意软件检测系统

基于Python的恶意软件检测系统,我们可以采用机器学习方法来分析文件特征并预测是否是恶意软件。以下是一个基本的流程,使用特征工程和机器学习模型来实现恶意软件检测: 主要步骤: 数据准备:收集包含恶意和正常文件的特征数据。可以从公共的恶意软件数据集(如CICIDS,Kaggle上的恶意软件数据集等)中获取。 数据预处理:清洗数据并进行特征提取。 模型训练:选择一个机器学习模型进行训练,比如决策树、随机森林或支持向量机(SVM)。 模型评估:使用交叉验证、精度、召回率、F1分数等评估模型性能。 模型预测:使用训练好的模型对新样本进行恶意软件检测。 以下是一个简单的例子代码,展示如何使用Python的机器学习库(例如scikit-learn)来构建一个恶意软件检测系统:

2025-04-09

人体健康数据集.csv

人体健康监测数据集,可以用于人体健康数据分析毕设

2025-04-09

云南省各旅游景点数据集,可以用于做旅游大数据分析毕设 云南旅游数据.csv

云南省各旅游景点数据集,可以用于做旅游大数据分析毕设

2025-04-09

医疗行业中风数据集healthcare-dataset-stroke-data.csv

疾病中风分析数据集,可以用于医学数据分析专业

2025-04-09

全国各高校专业排名数据集

全国各高校专业排名数据集,字段包含年份、名次、学校名字、专业评估等级,数据量大概7000+

2025-04-09

北京公交发车数据.xlsx

城市公交数据集,可以用于大数据分析可视化毕设

2025-04-09

S0020基于ssm的001BBS在线论坛管理系统源码.zip

本资源为基于Java的在线论坛管理系统的完整代码,适用于【计算机专业毕设/课设】。通过该项目,您可以快速实现在线论坛管理相关功能,并且该代码已进行了充分的注释和优化,便于开发者快速理解和二次开发。 资源特色: 功能齐全: 高效实现:代码经过优化,性能稳定, 详细注释:每个模块和函数均附带详细注释,便于理解和学习。帮助您快速上手和部署。 易于扩展:代码结构清晰,方便进行二次开发和功能拓展。 适用人群: 初学者:帮助您快速了解并实现[技术/功能]。 开发者:提供高效的代码实现,助力项目开发。 学术研究:为相关领域的研究人员提供有价值的代码资源。 下载说明: 本资源为付费资源,购买后可获得完整代码 支持提供技术支持,若有问题请及时联系我们。

2025-04-01

S0056基于java的协同过滤算法的电影推荐系统.zip

本资源为基于Java的协同过滤算法电影推荐管理系统的完整代码,适用于【计算机专业毕设/课设】。通过该项目,您可以快速实现电影推荐管理相关功能,并且该代码已进行了充分的注释和优化,便于开发者快速理解和二次开发。 资源特色: 功能齐全: 高效实现:代码经过优化,性能稳定, 详细注释:每个模块和函数均附带详细注释,便于理解和学习。帮助您快速上手和部署。 易于扩展:代码结构清晰,方便进行二次开发和功能拓展。 适用人群: 初学者:帮助您快速了解并实现[技术/功能]。 开发者:提供高效的代码实现,助力项目开发。 学术研究:为相关领域的研究人员提供有价值的代码资源。 下载说明: 本资源为付费资源,购买后可获得完整代码 支持提供技术支持,若有问题请及时联系我们。

2025-04-01

S0092基于SSH的营养健康管理系统.zip

本资源为基于Java的SSh框架营养健康管理系统的完整代码,适用于【计算机专业毕设/课设】。通过该项目,您可以快速实现营养健康管理相关功能,并且该代码已进行了充分的注释和优化,便于开发者快速理解和二次开发。 资源特色: 功能齐全: 高效实现:代码经过优化,性能稳定, 详细注释:每个模块和函数均附带详细注释,便于理解和学习。帮助您快速上手和部署。 易于扩展:代码结构清晰,方便进行二次开发和功能拓展。 适用人群: 初学者:帮助您快速了解并实现[技术/功能]。 开发者:提供高效的代码实现,助力项目开发。 学术研究:为相关领域的研究人员提供有价值的代码资源。 下载说明: 本资源为付费资源,购买后可获得完整代码 支持提供技术支持,若有问题请及时联系我们。

2025-04-01

S0082基于H5+Springboot的数码产品电商网站源码1413975432.zip

本资源为基于Java的数码产品电商网站管理系统的完整代码,适用于【计算机专业毕设/课设】。通过该项目,您可以快速实现数码产品电商管理相关功能,并且该代码已进行了充分的注释和优化,便于开发者快速理解和二次开发。 资源特色: 功能齐全: 高效实现:代码经过优化,性能稳定, 详细注释:每个模块和函数均附带详细注释,便于理解和学习。帮助您快速上手和部署。 易于扩展:代码结构清晰,方便进行二次开发和功能拓展。 适用人群: 初学者:帮助您快速了解并实现[技术/功能]。 开发者:提供高效的代码实现,助力项目开发。 学术研究:为相关领域的研究人员提供有价值的代码资源。 下载说明: 本资源为付费资源,购买后可获得完整代码 支持提供技术支持,若有问题请及时联系我们。

2025-04-01

手机收据集,可以用于手机数据分析

手机收据集,可以用于手机数据分析

2025-07-15

二手房数据集,数据量大概14-15万条

二手房数据集,数据量大概14-15万条,字段包含: `name` string COMMENT '名字', `area` Bigint COMMENT '面积', `address` string COMMENT '地址', `time` string COMMENT '时间', `price` Bigint COMMENT '价格', `jzfs` string COMMENT '建造方式', `yongtu` string COMMENT '用途', `shengfen` string COMMENT '省份'

2025-07-15

音乐数据集,可以用于做音乐大数据分析毕设

音乐数据集,数据量大概10万条,字段包含:id artist_id album_title genre year_of_pub num_of_tracks num_of_sales rolling_stone_critic mtv_critic music_maniac_critic

2025-07-15

垃圾邮件分类数据集,可以用于做垃圾邮件分类毕设

垃圾邮件分类数据集,数据量大概61000条,字段包含文件内容和特征值

2025-07-15

全国天气大数据分析数据集

全国天气大数据分析数据集,数据量大概25000条,字段包含: `riqi` int , `tianqi` string , `zuidiqiwen` int , `zuigaoqiwen` int , `fengxiang1` string , `fengxiang2` string , `fengji` double , `city` string

2025-07-15

电商数据分析数据集,可以用来做电商大数据分析毕设

数据量大概9-10万条,字段包含用户类型 省份 消费等级 年龄 referrer 浏览category 每周平均浏览次数

2025-07-15

全国空气质量数据集,可以用于做空气质量大数据分析毕设

数据量总共55w条,字段包含 `time` string , `city` string , `aqi` double , `pm2dian5` double , `pm10` double , `so2` double , `no2` double, `co` double

2025-07-15

英文数字语音识别数据集,可以用于做语音识别毕设

英文数字语音识别数据集,可以用于做人工智能专业语音识别毕设,语音数据集包含0-9多个语音包

2025-07-15

电商行业订单数据集,可以用于做数据分析

数据量一万条左右,字段包含商品名称、价格、购买数量

2025-07-15

快手短视频数据集,可以用于做短视频数据可视化分析

快手短视频数据集,可以用于做短视频数据可视化分析,字段包含标题 频道 实体 标签 来源 播放链接

2025-07-15

python毕设论文模版-基于Django的旅游预订系统设计与实现

基于Django的旅游预订系统设计与实现旨在提升旅游业的管理效率和游客的预订体验。该系统通过结合Django框架与MySQL数据库,搭建了一个高效的旅游信息管理平台,能够为游客提供景点、酒店、线路等预订服务,并通过数据可视化技术实时监控游客流量,从而有效避免过度拥挤,提高安全性和游客满意度。 系统包括前台和后台两部分: 前台功能:提供游客注册登录、景点信息查询、酒店和线路预订等服务。游客可以通过系统轻松浏览并预订景点和酒店,还可以查看相关公告和新闻,帮助他们做出旅行决策。 后台管理功能:供管理员管理景点、酒店信息,处理预订,发布公告,并进行游客流量监控。管理员还可以查看和管理订单,确保景区运营的高效与安全。 技术架构方面,系统采用了B/S结构,通过Django进行后台逻辑处理和前端页面渲染,前后端分离,数据通过MySQL数据库进行存储与管理。整个系统的设计重视用户友好性与可扩展性,确保未来可以轻松进行功能扩展和更新。 系统通过Django框架的强大支持,不仅保证了数据的安全性,还提供了灵活的后台管理功能。无论是游客的预订需求,还是管理员对景点和订单的管理需求,都能够得到高效解决。

2025-07-02

基于微信小程序的公务员考试学习系统的设计与开发

系统概述 本系统旨在为准备公务员考试的考生提供便捷的学习平台。基于微信小程序开发,系统允许考生随时随地进行公务员考试相关的练习与测试,利用碎片化时间提升学习效率。系统包括前台用户和后台管理员两大部分,前台主要为考生提供注册、登录、信息修改、题库练习、测试、错题集和申论题目搜索等功能,后台则由管理员负责题库管理、用户信息管理及反馈处理等。 系统特点 前后端分离架构:前端采用微信小程序开发框架 MINA,后端使用 PHP 和 ThinkPHP框架,确保系统高效稳定。 随时随地学习:用户通过微信授权登录,快速进入学习界面,随时可以进行在线练习与测试。 丰富的功能模块: 用户注册与登录:通过微信授权,考生可快速注册并登录,方便快捷。 练习与测试:提供行测练习与在线测试,帮助用户根据实际情况进行模拟考试,增强实战能力。 错题集与收藏夹:自动记录错误题目,考生可随时查看并复习。 管理员后台管理:支持管理员管理用户信息、反馈、题库以及考试设置,确保系统运作顺畅。 数据管理:使用 MySQL 数据库存储用户信息、题库和用户反馈,保证数据的稳定性与安全性。 技术架构 前端技术:使用微信小程序自带的 MINA 框架,通过 WXML、WXSS 和 JavaScript 实现页面交互与动态效果。 后端技术:PHP 和 ThinkPHP 框架为后端服务提供 API 接口,处理数据存取与用户请求。 数据库:采用 MySQL 数据库,合理设计数据表与关系,保证数据的高效存取和安全性。 目标与意义 随着公务员考试报名人数逐年增长,竞争愈加激烈。开发基于微信小程序的公务员考试学习系统,使得考生能够利用碎片化时间高效备考,既方便又实用。该系统的设计不仅提高了学习效率,还为考生提供了便捷的复习工具,有助于提升他们的考试成绩。 结论 该系统成功实现了公务员考试的学习与备考管理功能,具有较

2025-07-02

【数据科学与大数据技术】基于Python的国内天气数据分析与可视化:毕业设计开题报告

内容概要:本文是重庆邮电学院大数据学院的一份开题报告,主题为“基于Python的国内天气数据分析与可视化”。报告详细阐述了该课题的研究背景、意义、目的、研究现状、基本内容、预期目标、研究方案和进度安排。研究旨在通过Python编程语言实现国内天气数据的获取、处理与可视化分析,具体包括使用request库从网络接口爬取天气数据,利用Pandas等工具进行数据清洗和处理,最后通过Matplotlib、echarts等工具将数据可视化,揭示天气变化规律,为农业、城市规划等领域提供决策支持。 适用人群:适用于数据科学与大数据技术专业的本科生,尤其是对气象数据分析感兴趣的高年级学生。 使用场景及目标:① 学习Python编程语言在气象数据分析中的应用;② 掌握数据采集、清洗、分析与可视化的完整流程;③ 提供农业、城市规划、旅游等领域的决策支持。 其他说明:此开题报告详细列出了研究进度安排,从2024年10月至2025年5月,涵盖资料收集、撰写开题报告、论文初稿和定稿、准备答辩等环节。同时,报告还引用了多篇国内外相关文献,为研究提供了坚实的理论基础。学生需在指导教师的指导下独立完成毕业论文,并确保按时、按质、按量完成任务。

2025-06-25

课程设计项目:基于flask的校园活动摄影作品征集系统

智能照片评选与导出系统 ——高效、灵活、便捷的赛事管理解决方案 系统简介 本系统是一个基于 Flask 框架开发的智能化照片评选与导出平台,适用于摄影比赛、艺术评选、学术竞赛等多种场景。管理员可以轻松管理参赛作品,评审专家可高效评分,系统自动统计票选结果,并支持一键导出获奖名单,大幅提升活动组织效率。 核心功能 智能评选管理 支持参赛作品的批量上传、分类、展示 自定义评分规则,灵活适配多种评选需求 实时统计票数与排名,确保公平公正 自动化获奖名单导出 根据评分自动生成优胜榜单 HTML / PDF / Excel 等多种格式导出 支持自定义模板,满足个性化需求 高性能与稳定性 采用 Python Flask + Jinja2 架构,确保系统健壮可靠 优化数据库设计,轻松应对高并发访问 简单易用 清晰的交互界面,零学习成本 模板化设计,管理员可快速调整系统风格 灵活集成至现有 Web 平台或独立运行 适用场景 摄影比赛 | 赛事评选 | 艺术展览 学术竞赛 | 企业评优 | 公众投票活动 技术亮点 Python + Flask 构建高性能后端 Jinja2 模板引擎 实现动态页面渲染 数据库优化 确保快速查询与统计 响应式设计 兼容 PC / 手机 / 平板 让评选更高效,让管理更轻松! 联系我们:如需定制化功能或技术支持,欢迎随时咨询!

2025-07-02

【基于Python的全国博物馆数据分析与可视化】开题报告:构建博物馆数据展示平台以优化资源配置与文化传播

内容概要:本文是重庆邮电学院大数据学院的一份开题报告,主题为“基于Python的全国博物馆数据分析与可视化”。随着社会经济的发展,博物馆在文化传播和教育方面的作用日益重要,但目前博物馆数据管理仍存在分散、孤立的问题。本项目旨在通过Python技术对全国博物馆数据进行清洗、处理和可视化,以提供一个直观、易于理解的博物馆数据展示平台。研究内容包括博物馆的地理分布、类型、规模、参观人数等多维度数据分析,并通过数据可视化技术将信息以图表、地图等形式展示,增强用户体验。预期成果包括完成行业数据可视化、建立数据模型、找到影响博物馆管理的关键因素。 适合人群:数据科学与大数据技术专业的本科生,特别是对博物馆数据分析与可视化感兴趣的学生和研究人员。 使用场景及目标:①通过Python技术对全国博物馆数据进行清洗、处理和可视化;②分析博物馆的地理分布、类型、规模、参观人数等多维度数据;③通过数据可视化技术将信息以图表、地图等形式展示,帮助用户直观理解数据;④为博物馆管理、学术研究和文化传播提供精准高效的工具。 其他说明:本项目计划从2024年10月至2025年5月完成,分为资料收集、开题报告撰写、论文初稿撰写、论文定稿和答辩准备等阶段。主要参考文献涵盖了国内外关于博物馆数据分析与可视化的最新研究成果。

2025-06-25

112-output贫困生识别.xlsx

贫困生识别数据集,可以用于大数据分析毕设

2025-06-24

链家二手房数据集,可以用于大数据分析毕设

这份数据集包含了重庆市江北区的二手房房源信息,记录了多个房产的详细信息,包括房源的基础属性、价格、楼层、户型等。每一行代表一个房源,提供了关于房屋的地理位置、装修情况、楼层信息、房源链接等,适用于房地产分析、市场研究、房价预测等任务。 具体字段说明如下: id:房源的唯一标识符。 标题:房源的简短描述,提供房源的关键信息。 图片链接:该房源的相关图片链接。 价格:房屋的售价,单位为万元。 面积:房屋的建筑面积,单位为平方米。 户型:房屋的户型,如“3室2厅”。 楼层:房屋所在楼层。 总层数:房屋所在楼栋的总层数。 小区名称:房源所在的小区名称。 链接:该房源的详细信息页面链接。 市区:该房源所在的市区,这里均为江北区。 该数据集可用于分析江北区二手房市场的供需情况、房价波动、市场趋势等。通过对这些信息的深入分析,用户可以了解不同户型、楼层、位置等因素对房价的影响,并据此做出更有依据的决策。同时,这份数据集也适用于房地产开发商、投资者以及有意在该地区购房的消费者,提供了一个实时、全面的市场信息参考。

2025-06-24

地震强震动参数数据集.xls

这份数据集记录了多个地震事件的震中信息及台站观测数据。每一行记录了一个台站对特定时间发生的地震事件的观测结果,包括震中坐标、震源深度、震级、台站位置信息,以及该台站记录的仪器烈度、加速度、速度等关键参数。数据量大概22000条 具体字段解释如下: 事件编号:每次地震事件的唯一标识符。 发震时间:地震发生的具体时间。 震中纬度、震中经度:地震震中的地理坐标,标识震中所在的地理位置。 震源深度:地震震源发生的深度,以千米为单位。 发震地点:地震发生的具体地点。 震级:地震的震级,表示地震的强度。 台网代码、台站编码:记录台网和台站的标识信息。 台站名称、台站纬度、台站经度:该台站的名称及其地理坐标。 震中距:该台站与震中的距离。 仪器烈度:根据台站仪器记录的烈度值,表示地震的强度。 总峰值加速度PGA、总峰值速度PGV:记录的最大加速度和最大速度,反映地震的强烈程度。 场地标签:台站所处的地质类型,可能是基岩或地表等。 参考Vs30:地震波传播速度的参考值,用于评估地震波的传播特性。 东西分量PGA、南北分量PGA、竖向分量PGA:震动的加速度分量,分别表示东西、南北和竖向方向上的地震加速度。 东西分量PGV、南北分量PGV、竖向分量PGV:震动的速度分量,分别表示东西、南北和竖向方向上的地震速度。 此数据集主要用于地震学研究,特别是地震波传播、震中与台站的关系以及台站对地震强度的反应分析。通过该数据,可以进行地震响应分析、地震危险性评估,并为地震预警、灾害预测及防灾减灾提供重要的基础数据。

2025-06-24

恶意钓鱼网址检测数据集,数据量23w条

这份数据集包含了多个网站的详细特征和结构信息,涉及网站的基本属性、URL特征、网页元素、响应性等方面的指标。每一行数据代表一个独立的网页,包含网站的各类技术和结构特征,适用于网站优化、网页性能分析及网站分类等任务。 具体字段说明如下: FILENAME:表示文件的名称,通常为文本文件,包含了网站的相关数据。 URL:网站的完整URL,指向具体的网页或站点。 URLLength:URL的长度,表示URL的字符数。 Domain:网站的主域名。 DomainLength:主域名的长度。 IsDomainIP:表示域名是否为IP地址。 TLD:顶级域名(如.com、.org等)。 URLSimilarityIndex:URL的相似度指数,用于衡量与其他网站URL的相似性。 CharContinuationRate:URL中字符延续的比率,衡量字符是否有连续性。 TLDLegitimateProb:顶级域名是否合法的概率值。 URLCharProb:URL字符的概率值,反映URL字符在合法性上的可能性。 TLDLength:顶级域名的长度。 NoOfSubDomain:子域名的数量。 HasObfuscation:是否存在URL混淆,表示URL是否经过加密或混淆处理。 NoOfObfuscatedChar:URL中经过混淆处理的字符数量。 ObfuscationRatio:URL混淆字符的比率。 NoOfLettersInURL:URL中字母的数量。 LetterRatioInURL:URL中字母的比率。 NoOfDegitsInURL:URL中数字的数量。 DegitRatioInURL:URL中数字的比率。 NoOfEqualsInURL:URL中等号(=)的数量。 NoOfQMarkInURL:URL中问号(?)的数量。

2025-06-24

热水器设备运行状态监控数据集,可以用于大数据分析毕设

这份数据集记录了某设备的温度控制及运行状态数据,包含了多个时间点的数据记录。每一行记录了设备在某一特定时间点的状态信息,主要包括设备的开关机状态、加热与保温状态、实际温度、热水量、水流量、加热剩余时间和当前设置温度等关键信息,数据量大概18000条。 具体字段解释如下: 发生时间:表示数据记录发生的具体时间,以年月日时分秒的格式显示。 开关机状态:记录设备当前的开关状态,表明设备是否处于开机或关机状态。 加热中:表示设备是否在加热状态。 保温中:表示设备是否在进行保温操作。 实际温度:设备当前实际的温度。 热水量:当前系统中的热水量,以百分比表示。 水流量:水流量的数值,记录设备运作时的水流速率。 加热剩余时间:剩余的加热时间,以分钟为单位。 当前设置温度:设备当前的目标设置温度。 此数据集可用于分析设备的运行效率、温度控制精度以及加热和保温操作的时效性。同时,也能够为设备的性能优化提供基础数据支持,帮助工程师或管理人员评估设备运行的稳定性和效率。

2025-06-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除