一份风控面试题总结

本文是一份详尽的风控面试题总结,涵盖了进件渠道、策略制定步骤、数据来源、策略优化、数据清洗、特征衍生、特征筛选、分箱方法、目标变量定义、模型调参、ks范围、模型监控等多个方面,旨在帮助面试者准备风控岗位的面试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      前几天一位网友整理了一份面试题目,主要是偏风控模型岗,看了一下整理得很全面和实用。之前也整理过几份面试题,这次继续整理一下,希望能帮助一些需要的同学。之前写面试相关的问题:

一份很全的风控面试题

信贷风控模型岗的一些经验

1.进件渠道(60%会问到)

线上业务:信息流、贷超、APP、微信公众号等

线下业务:地摊导流、网点进件、合作企业团办、客户自己申请等

2.策略制定的步骤(20%会问到)

      策略主要是根据业务中的风险点,寻找有效的特征进行防范。将变量进行特征重要性排序,用排名较高的/高IV的变量用作策略,一般命中策略的坏样本浓度要达到3倍以上,同时也要按月回溯策略的命中率和逾期率,尽可能少影响通过率的情况下框住坏的客群。弱变量/低IV的变量可以放到模型中,同时要注意策略用到的变量和模型用到的变量尽量不要有相似的,这样可以减少策略与模型的耦合。

3.贷前策略包括哪些数据(80%会问到)

       一般数据源类型分为决策类和排序类。决策类有黑名单类(多头、逾期、黑产、失信、罪犯等),验证类(学历、社保公积金、运营商实名与在网时长、地址信息、收入信息等),刻画类(关注类、消费画像、第三方规则),排序类有评分类(芝麻信用分、芝麻欺诈分等)。

4.说说策略是怎么做优化的?(100

### 安全与风控面试常见问题及答案 #### 政策与策略的区别及其应用 在风险管理领域,政策和策略有着不同的作用范围。政策明确了行为准则,即明确规定了哪些行动是可以接受的而哪些是不可接受的,这些属于硬性的规定[^1]。相比之下,策略则更侧重于指导如何执行具体的任务,在实际操作过程中可以根据情况灵活调整,被视为一种较为柔软的规定框架。 #### 风险控制中的具体方法论 当涉及到风险控制的具体实施时,通常采用多种技术手段相结合的方式来进行决策支持。例如,“经验与阈值”的概念被广泛应用于设定合理的预警界限以及识别潜在的风险因素;通过分析历史数据积累的经验教训可以帮助建立更加精准有效的监测机制。 #### 数据库管理的安全考量 对于像Hive这样的大数据处理平台而言,其元数据往往会被保存在一个关系型数据库管理系统之中,比如MySQL。为了保障系统的稳定性和可靠性,企业可能会采取诸如主从复制、读写分离等高级特性来增强服务端架构层面的安全防护能力[^2]。 #### 开发工具的选择依据 随着软件开发行业的快速发展和技术栈的日新月异变化,开发者们也在不断地适应新的工作环境并尝试各种新型集成开发环境(IDE)。尽管某些商业化的IDE提供了丰富的特性和高效的编码体验,但对于预算有限或者偏好轻量级解决方案的人来说,开源项目如Visual Studio Code同样是一个非常优秀的替代品[^3]。 ```python # Python示例:简单的异常检测算法实现 def detect_anomalies(data_points, threshold): anomalies = [] mean_value = sum(data_points)/len(data_points) for point in data_points: if abs(point - mean_value) > threshold: anomalies.append(point) return anomalies ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值