反欺诈笔记

本文是作者阅读反欺诈相关文章后的笔记,主要介绍了如何通过无监督学习(聚类+xgb)进行反欺诈,并列举了多个反欺诈技巧,如同一单位、户籍地址、宅址和手机号匹配多笔申请订单的审查,以及地址和联系人信息的衍生变量在模型中的应用。此外,还提到了反欺诈流程中的关键步骤,如注册、登录、实名认证、绑卡、授信、放款和提现环节的风控考虑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

​      上周用了几个晚上重新看了一遍反欺诈相关的一些文章,并动手作了一点笔记。主要看的是公众号《反欺诈攻防战》和知乎"黄姐姐HJJ",将笔记扫描了一下分享给大家。

      上面的内容中很多手段因为各种原因在当下已经不适用了,比如通讯录通话记录数据不可获取、设备数据需要授权采集等。不过还是可以通过这些文章中获得一些做反欺诈的思路,比如黄姐姐文章中经常提及的无监督做反欺诈,其实主要是聚类(寻找异常标签)+xgb(有监督训练),这个点对我来说比较新颖。当然,反欺诈主要还是以有监督为主,涉及的内容有反欺诈审核、案调、策略/模型,这里我大概聊一聊自己整理的一些反欺诈相关的trick。

1.同一单位匹配多笔申请订单

       需要重点关注多笔订单之间的单位名称属性、申请时间、申请地点、申请人联系。是否属于全国性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值