#年薪过百万!生成式人工智能产业链及职位薪酬研究报告!
一、生成式人工智能产业概况
2025 年伊始,中国一家名为 DeepSeek 的初创型人工智能公司发布一款新模型,直接导致美国以科技企业为 主的纳斯达克股指 3% 的跌幅,这其中包括以制造图形芯片为主的英伟达下跌更是将近 17%,创下自 2020 年 3 月以来的最大跌幅,使其股价跌回至 2024 年 10 月份水平。
之所以产生如此大的震动,主要源于 DeepSeek 所发布的 AI 大模型以其高性能、低成本、双语处理能力强且 快速开发的模式,已达到 OpenAI 的水平。
这令市场分析人士不禁产生质疑: 是否真的需要通过高成本的模式 进行开发?如果说 DeepSeek 的这套模式果真能被反复应用,那么美国市场上所有跟人工智能相关的企业都 将面临被重新估值。
以 DeepSeek 为典型代表之一,国内 AI 技术与水平的高速发展既彰显了国家实力,同时更意味着国内各行业 企业基于 AI 为底层能力的应用与推广将迎来全新时代。
作为备受瞩目的新兴产业,生成式人工智能的高速发展对于企业经营或普通员工而言,意味着效率提升、协同 提质、员工体验改善以及职能边界的消除,等等。
而另一方面,该领域也成为生产方式改革、生产职能重塑以及 就业的重要区域。
基于此,本报告结合生成式人工智能产业发展以及产业人才相关动态等方面做洞察,以期望 为国内人工智能相关企业以及相关专业人才就业提供借鉴。
生成式 人工智能定义
根据阿里巴巴 & 达摩院《生成式人工智能治理与实践白皮书》指出,生成式人工智能 (Generative Artificial Intelligence) 是人类设计的一种基于深度学习的技术,能模拟人类思维,生成具有一定连贯性和逻辑性的 文本、图像、视频、语音、代码等内容。
生成式人工智能能够自己创造出新的内容,而不是只能根据输入数据进 行处理。
随着技术的发展,生成式人工智能技术被广泛应用于各行各业,例如智能办公、智慧医疗、智慧工程等等,成为 产业实现降本增效提质、释放人力、构建新质生产力、改善员工体验等目标的重要支撑力量。
产业发展 概况
2022 年 11,OpenAI 发布了对话式通用人工智能服务 ChatGPT,仅推出 5 天,用户数就超过 100 万;成 为生成式人工智能技术与应用历程中具有重要意义的里程碑之一。
同样,2024 年 1 月,国内生成式大模型 DeepSeek 发布,也令全球各国看到中国人工智能产业的飞速发展。
根据公开信息显示,目前我国人工智能产 业发展呈现技术持续突破与创新、产业应用深化以及政策支持和生态建设 3 大典型趋势,并涌现出一批典型 代表企业:
技术突破与创新: 以大模型、多模态 AI、AI 芯片为主要技术突破点推进产业持续发展。以大模型为例,目前 国内诸多大厂持续深入研究,典型代表大模型产品有如百度文心一言、阿里通义千问、华为盘古大模型等;
产业应用深化: AI 赋能产业广泛,比如智能制造、智慧城市、智慧医疗等。典型代表企业有海尔集团推出的具 有中国自主知识产权的工业互联网平台,成为智能制造的重要代表,再如滴滴,是 AI 应用于交通管理和安全 出行的重要代表等;
政策支持与生态建设: 以北、上、深、杭为重要区域,目前已经形成 AI 产业集聚区;此外如上海临港、武汉超 算中心为代表,多地已建立智算中心,用于支持各地区 AI 研发与应用。
纵观人工智能产业链整体分布情况,国内从事人工智能研究与应用的企业分布在上下游不同环节,主要包括:
上游: 基础层,包括数据、算力、计算平台、模型开发训练平台等; 中游:算法和模型层,涉及机器学习、计算机视觉、自然语言处理(大型语言模型)、优化算法等多个方面;
下游: 主要指应用层,AIGC 可产生包括文本、图片、音频、视频等在内的多种模态的内容,并应用于传媒、电商、 影视、娱乐、教育等领域。
生成式人工智能产业链分布
据工信部数据显示,截至 2024 年 9 月底,我国人工智能核心产业规模接近 6000 亿元,相关企业超过 4500 家。
对比全球,2024 年全球人工智能市场规模预计达到 1.6 万亿元,同比增长 37.9%,其中中国生成式人工智能应 用率高达 83%,居全球首位 5。
赛迪顾问指出,2025 年中国人工智能产业将迎来爆发式增长,增速领跑全球。
中国人工智能产业在未来 10 年 将呈现出显著的增长趋势,并在全球市场中占据重要地位。
从 2025 年到 2035 年,中国人工智能产业规模预 计将从 3985 亿元增长至 17295 亿元,复合年增长率为 15.6%。其中,2030 年,中国人工智能产业规模预计突 破 1 万亿元。
与此同时,公开信息也指出,智能驾驶、智能制造以及算力基础设施将是接下来的核心发展领域,为此还需要 加强产学研用协作,推动算力资源共享,支持中小企业参与 AI 市场:
智能驾驶与具身智能: 处于 AI 应用的第一梯队,对 AI 技术有紧密需求和强伴生性。
智能制造: 人工智能正从研发设计、营销服务等环节向生产制造环节深入渗透,推动工业绿色低碳发展和高端装备升级。
算力基础设施: 智算中心作为 AI 技术的核心底座,未来 3 年拟建规模将达到 2023 年底投产规模的 5 倍,带 动人工智能核心产业增长 2.9 至 3.4 倍。
中国人工智能产业规模及增速预测
政策扶持 概况
当前,人工智能领域发展迅速,一方面得益于技术本身高歌猛进、持续深耕,同时也与国家及地方政府层面政 策加持息息相关。从目前各层级政府发布的政策法规来看,部分中西部省份政策侧重产业扶持,东部地区更强 调技术创新,除此之外政策整体共性支持方向主要集中在 4 方面,即:
-
资金补贴: 多地提供 AI 企业研发补贴(如上海最高 3000 万元)、算力租赁优惠(如深圳补贴 50% 费用);
-
场景开放: 政府主导开放医疗、交通、政务等公共数据,鼓励 AI 企业参与场景应用(如北京开放自动驾驶测试道路);
-
人才引进: 提供落户、住房补贴(如杭州对 AI 顶尖团队最高 1 亿元资助); 算力基建:多地建设智算中心(如上海临港、武汉超算中心),降低企业算力成本。
多重支持下,政府以及各地企业在大力发展人工智能产业时,也许清醒注意到发展难点,例如数据开放程度、 隐私保护以及商业化平衡等,此外各地争抢 AI 头部企业,还可能导致重复建设等。以下为各级政府人工智能相 关政策。
3.1 国家层面政策
3.2 地方政策
二、生成式人工智能人才趋势洞察
人工智能产业发展蓬勃
诚如前文所述,在政策与技术的交叠加持下,我国人工智能产业发展呈现稳步增长和创新活跃的态势,例如以 生成式人工智能为代表的数字技术与制造业深度融合,成为近两年重要的数字技术突破之一。
根据天眼查数据显示,目前我国有人工智能相关企业超 190 万家,85.43% 的相关企业成立于 5 年内。
从企业 注册数量趋势来看,近年来,人工智能相关企业注册数量呈快速增长趋势,2023 年新增注册企业超 53 万家, 相比 2022 年增长 40.4%,其中 2024 年以来已新增相关企业超 50 万家。
也有报告指出我国人工智能企业数 量已经超过 4000 家。
虽然两组数据存在较大差距,猜测可能是由于统计口径、时间节点等不同所导致,但无 论哪种数据,都可以反映出我国人工智能产业所呈现的蓬勃态势。
本次报告累计调研企业样本 536 家,均为上市公司,覆盖产业链上中下游,即:基础层、算法和模型层、应用层。
报告关注到:
-
活跃于上游产业链中的样本企业主要以 100-500 人规模、1000-5000 人规模分布最广,分别占比 28.03%、 39.39%;
-
从事算法模型研究的样本企业主要以 1000-5000 人规模分布最广,占比为 43.5%;
-
应用层产业链中的样本企业同样以 1000-5000 人规模最多,占比 40.4%,此外该环节万人以上规模企业相比 于其他上中游占比最多,达到 13.9%,
侧面反映国内 AI 产业在各行业细分场景中融合创新持续深入、持续创新。
人工智能基础层企业规模占比
人工智能算法模型层企业规模占比
人工智能应用层企业规模占比
产业人才供需失衡迹象明显
值得深度关注的是,尽管国内人工智能领域发展势头良好且迅速,人才需求也表现旺盛,但也有诸多信号指出 高端人才供给不足的情况已有所显露,算法类人才、复合型人才需求尤为紧俏。
根据 2021 年数据显示,中国人工智能高端人才数量仅为美国的 20%。麦肯锡等权威机构数据也显示,到 2030 年,中国对 AI 专业人才的需求预计将达到惊人的 600 万,而目前的供给能力仅约为 200 万人,这将导 致一个约 400 万人的人才缺口。
这一数据不仅揭示了 AI 人才市场的严峻现状,也为国内企业在 AI 人才招募与保留方面提了醒。
报告认为,人 工智能技术在智能制造、智慧金融、智慧医疗等领域的广泛应用,进一步推高了专业人才需求。
以下结合产业链上中下游人才市场具体薪酬数据做分析。
基础层
人工智能基础层是支撑整个 AI 技术体系的核心底层架构,决定了 AI 技术发展的上限。
它主要包括硬件、算法框架、数据资源、算力基础设施等关键要素,是技术层(如计算机视觉、自然语言处理)和应用层(如智能驾驶、 智慧医疗)的根基。
该产业链中,整体人才画像表现出顶尖研究型人才、经验门槛高、学历要求高等特点:
-
顶尖研究型人才: AI 芯片架构师、框架核心开发者、算法科学家等岗位全球紧缺,头部企业争夺激烈。
-
经验门槛高: 如芯片设计需 5 年以上流片经验,框架开发需参与过开源社区核心项目。
-
学历偏好: 基础层研发岗普遍要求硕士 / 博士学历,尤其是算法、芯片等领域。
1000-5000 人规模企业中,总监级年收入瞩目
报告关注到,近两年来,人工智能领域基础层相关企业涨薪率逐步回升,2023 年、2024 年涨薪率分别 为 -2.22%、-1.64%。
同时报告发现,1000-5000 人规模企业中,总监级年总现金收入水平尤其具备优势地位,近一年年总现金收 入达 720,037 元 / 月。
该收入水平不仅在同规模企业中与经理、主管等年收入水平有明显领先优势,且在其他 规模企业中同职级中,薪酬水平同样也保持竞争优势。
猜测与该规模企业对该类岗位职能有更复合任职要求 等有关。以下附该产业链环节不同职级年收入水平情况供参考。
人工智能基础层不同职级年总现金收入(近一年) 单位:元
人工智能基础层不同职级年固定收入(近一年) 单位:元
一线城市仍是人才需求及薪酬水平“黄金区域”
由于人工智能产业本身地区集聚效应等特性,报告监测近三年各地区产业相关人才供需及薪酬情况发现,一线 城市人工智能在基础层产业链中具备岗位需求集中、薪酬水平更具核心竞争力等特征。
2022-2024 年三年间, 北上广深 4 地累计招聘量突破 16 万人次,超出新一线城市三年招聘量总和近 3 成。
招聘薪酬方面,整体来看产业薪酬水平渐趋稳定。
2022 年以来,北京作为各项国家层面政策响应与贯彻的“第 一站”,故而产业发展更具核心优势,在人才竞争方面给予绝对的薪酬竞争优势,三年间薪酬水平持续正向增长, 2024 年平均招聘薪酬达到 27,397 元 / 月。
相比之下,广深两地整体薪酬水平不敌北上,2024 年两地招聘薪 酬 分 别 为 1 6 , 8 9 5 元 / 月 、2 2 , 7 9 7 元 / 月 。下 附 人 工 智 能 基 础 层 相 关 企 业 近 三 年 在 一 线 城 市 的 招 聘 趋 势 变 化 。
人工智能基础层近三年招聘量变化(一线城市) 单位:人次
人工智能基础层近三年招聘薪酬变化(一线城市) 单位:元/月
高端人才争夺指向应届生
最近一段时间,国内人工智能初创企业 DeepSeek 可谓炙手可热,其近期招聘信息中针对核心系统研发、深度 学习研究院等应届生岗位年薪可达百万等,也令众多求职者艳羡不已。
回归到基础层产业整体的应届生起薪情况,毫无疑问,来自重点院校的硕士、博士等更具薪酬竞争力。
数据显示, 2024 年,来自重点院校的硕士研究生起薪水平可达 25,400 元 / 月,但该水平相较于 2022 年略有下降。
这与部分热门企业热招情况”年薪可至百万”的新闻似乎存在不小差距。
对此,报告认为,目前国内人工智能产 业发展一定程度上已进入持续深入的阶段,在人才选用、队伍组建方面已经过较长一段时间沉淀,当前已进入 核心人才、专项高精尖人才定向遴选的阶段,而非“普遍性”录用,所以在人员预算方面也相对做适配倾斜,故而 与网络传闻存在不符,无论对基础层还是其他产业链均是如此。
下附近三年该产业链不同学历以及不同城市应 届生起薪,供参考。
人工智能基础层近三年不同学历应届生起薪水平 单位:元
人工智能基础层不同城市应届生起薪水平(部分) 单位:元
算法和模型层
在人工智能领域中,算法和模型层是直接驱动技术应用与商业落地的核心环节,涵盖从算法研发到模型部署的 全流程,同时也覆盖了“理论创新 -工程实现 - 商业落地”全链条。
故而该产业链既需要突破基础算法的科研 能力,也依赖工程化工具链的支撑,同时与行业场景深度绑定。
随着大模型技术普及,产业正从分散化定制向平台化服务演进,技术壁垒逐渐向数据、算力和生态整合能力 转移。
产业未来发展趋势大致表现为:
-
模型即产品(MaaP): 垂直领域预训练模型成为标准化商品。 开源与闭源博弈:大模型开源(如 Llama 2)降低行业门槛。
-
端到端自动化: 从数据标注到模型部署的全流程工具链整合。 绿色 AI:降低大模型训练能耗的算法与架构优化。
如此背景,也预示着算法与模型产业链下整体人才需求也将持续,比如大模型架构师、多模态算法工程师、生 成式 AI 研发工程师等。
不同规模企业中,总监及主管薪酬差异更为明显
数据显示,在不同规模企业中,总监级岗位在 5000-10000 人规模中薪酬水平位居首位,年总现金收入水平可 达 731,263 元 , 而在 1000-5000 人规模企业中薪酬水平最低,为 635,416 元。
与之同样具有典型差异表现的,还有主管职级,在 1000-5000 人规模企业中,年收入最高可达 364,631 元 / 月, 而在 500-1000 人规模企业中薪酬最低,年收入不及 30 万门槛。
据此,企业在招聘过程中为确保人才投入产 出比最佳,应有针对性地关注该薪酬水平并予以有效调整; 同样,求职者也应根据自身职级水平选择合适规模 企业。以下为算法和模型层产业链中不同规模企业与各职级年收入情况,供参考。
人工智能算法和模型层不同职级年总现金收入(近一年) 单位:元
人工智能算法和模型层不同职级年固定收入(近一年) 单位:元
北京或成算法和模型层产业“领头羊”
观察近三年一线城市中算法与模型层产业人才供需情况,我们发现,近三年北京地区相关岗位招聘量远超其 他三地,总量达 40 万之多。
据此,报告分析主要源于三方面:
人工智能产业相关企业本身在该地分布较多。根据《2024 胡润中国人工智能企业 50 强》榜单显示,北京 以 20 家企业上榜的成绩领先全国,占据 50 强企业四成
此外,北京市海淀区在 2024 年现有人工智能企业 1300 余家,占全市七成。
更宏观数据指出,北京人工智能相关企业数量约 2200 家,约占全国四成。而截至 2022 年 10 月,北京拥有人工智能核心企业 1048 家,占我国人工智能企业总量的 29%,位列全国第一。
根据相关数据,北京现有人工智能企业超 2400 家,并且在《2024 胡润中国人工智能企业 50 强》榜单中,北 京以 20 家企业上榜的成绩领先全国,占据 50 强企业四成 12。这些企业涵盖了AI 算力、算法等多个领域, 形成了全链条完整布局。
人工智能相关高精尖专业人才密集。媒体信息显示,北京作为中国的科技和教育中心,集聚了众多顶尖高等院校,如已有 30 所大学开设了人工智能本科专业,这为 AI 企业提供了源源不断的人才支持。
同时,北京的学者数量和论文发表量也在全国遥遥领先,这增强了科研与应用的连通性,为算法和模型层产业链企业的发展 提供了坚实的理论基础和技术支撑。
北京还是各项政策法规贯彻与落实的“第一站”,作为各项国家层政策的“首发站”,在政策、人才、科技等多重 利好因素的交叠影响下,北京在构建全栈式人工智能产业链方面具有得天独厚的优势,已经形成了从基础层 到应用层的完整产业链布局。
这使得北京在算法和模型层产业链上拥有更多的企业和资源,进一步促进了该 领域的发展。
以下为一线个城市近三年招聘量与招聘薪酬变化,供参考。
人工智能算法和模型层近三年招聘量变化(一线城市 ) 单位:人次
人工智能算法和模型层近三年招聘薪酬变化(一线城市 ) 单位:元 / 月
各地应届生起薪增长持续、地区差异明显
从样本企业应届生起薪水平情况来看,高要求、高学历等特征在算法和模型层产业链中依然存在,来自重点院 校的硕士研究生在求职中具备更多谈薪话语权,2024 年起薪可达 23,300 元 / 月。
具体到更多头部企业的核 心岗位上,其待遇则更高。
下附近三年应届生起薪对比以及部分城市应届生起薪水平,供参考。
人工智能算法与模型层不同学历应届生起薪水平(部分) 单位:元 / 月
人工智能算法与模型层不同城市应届生起薪水平(部分) 单位:元 / 月
应用层
生成式人工智能产业中应用层涵盖的细分领域包括但不限于文本生成、图像生成、音乐创作、程序代码生成、 设计与创新等。随着政策引导、技术创新以及产业链持续完善,国内生成式人工智能产业在应用层呈现出快速 发展、广泛应用的态势。
特别是在“百模争鸣”的繁荣局面下,为推动生成式人工智能多行业深度融合、创新应用 提供源源动力。
近年来,我国人工智能应用层在多个领域取得显著进展,如智能安防、智慧城市、智能医疗等,这些领域的应用 已经逐渐深入到人们的日常生活中,并展现出巨大的市场潜力和社会价值。
尽管如此,但我国当前人工智能应 用层尚未达到完全成熟的状态,技术水平与应用场景方面还仍需不断拓展,故而整体人才需求方面仍有较大空 间。
千人以下规模企业,薪酬表现更具吸引力
与产业链上、中游不同的是,应用层作为产业链下游环节,不同规模企业各职级薪酬水平呈现出微妙差异,千人 以下规模企业表现出的更强劲的薪酬竞争力。
以总监职级为例,年收入水平最高的是 500-1000 人规模企业、100-500 人规模企业次之,年总现金收入水平 分别可达 764,582 元、758,134 元。
再例如经理职级,年收入水平最高的是 100-500 人规模企业,500-1000 人规模企业中次之,年收入水平分别为 489,775 元、489,156 元。该薪酬特征与前文中上游、中游略有不同,期 望企业及求职者在招聘或求职过程中给予关注 , 避免惯性思维。
附应用层年收入水平,供参考。
人工智能应用层不同职级年总现金收入(近一年) 单位:元
人工智能应用层不同职级年固定收入(近一年) 单位:元
北、深两地招聘需求更为活跃
数据显示,一线城市中以北京、深圳两地近三年来招聘动态尤为活跃,三年间,北京累计招聘人数近 5 万人次, 深圳超过 4.4 万人次,广州、上海两地则相差甚远。
针对各地人员规划上表现出的特点,报告认为北京地区与 其政策、人才聚集、企业分布密集等息息相关,与其在算法和模型产业中所表现出的核心地位具有共性原因, 此处不做赘述。
反观深圳地区,根据深圳市人工智能行业协会发布的《2024 人工智能发展白皮书》显示,截至 2023 年底深圳 市人工智能相关企业数量达到 1646 家,位居全国第三。
深圳已经形成覆盖基础层、技术层和应用层的人工智 能产业链,从企业数量分布来看,产业链重心位于应用层,达 64.9%,主要集中在公共安全、智能制造、智能家 居和智能交通领域,故而人才需求更为密集。
此外,据深圳市发布的《深圳市加快打造人工智能先锋城市行 动方案》指出,明确到 2025 年全市人工智能产业规模达到 6000 亿元的目标,政策扶持层面也是该地在人工 智能应用层人才需求旺盛的重要原因之一。
但在招聘薪酬方面,报告发现北京、深圳两地近三年整体薪酬变化不大,反而是广州及上海两地,近三年来招 聘薪酬表现出积极正向的增长趋势,2024 年广州和上海两地招聘薪酬分别达 18,101 元 / 月、17,716 元 / 月,可 见各地人工智能产业探索持续、企业间竞争持续的利好势头。
人工智能应用层近三年招聘量变化(一线城市 ) 单位:人次
人工智能应用层近三年招聘薪酬变化(一线城市) 单位:人次
应届生起薪水平略低于上、中游
尽管当前应用层相关技术与拓展场景仍在持续深入,但相较于基础层、算法和模型层两个核心产业链的应届生 起薪水平,应用层相关企业的应届生起薪略低,来自重点院校的硕士研究生也难达 2 万水位线。
以下为人工智 能应用层不同学历应届生起薪水平及部分地区起薪水平,供参考。
人工智能应用层不同学历应届生起薪水平(部分) 单位:元 / 月
人工智能应用层不同城市应届生起薪水平(部分) 单位:元 / 月
生成式人工智能典型企业及人才分析
今年年初,DeepSeek 这家成立于 2023 年的年轻企业迅速走红,成为全国乃至全球 AI 领域的焦点,原因在 于其发布的 R1 模型在专业大模型排名 Arena 上表现出色,与 OpenAI 等顶尖模型相媲美,甚至在某些方面 超越它们,令全球震动。
随之而来的,DeepSeek 的核心团队构成也被外界关注,特别是其发布的招聘动态更 是被广泛传播。
从现有公开数据来看,DeepSeek 目前核心聚焦的岗位主要集中在深度学习、大模型相关,例如深度学习研 究院,招聘薪酬为 50-80k/ 月、大模型全栈工程师,招聘薪酬为 30-60k/ 月、客户端开发工程师,招聘薪酬 为 20-40k/ 月,以及核心系统研发工程师,招聘薪酬为 60-90k/ 月。
结合前文报告中各产业链环节岗位薪酬差异性等特征,本章节分别列举算力层、机器学习以及大模型等细分 领域中的典型代表企业,结合企业人才画像及现阶段核心关注岗位两个角度做简要分析,以供企业 HR 及求职 者参考借鉴。
浪潮信息
典型企业人才画像
观察企业近两年招聘趋势,报告发现整体上岗位需求呈明显递减趋势,其中自 2024 年下半年经历小幅波动, 渐有回温势头,这与当前国内整体人工智能领域发展势头基本保持一致。
各职能近一年招聘薪酬方面,目前以 IT 类、销售类、生产类、客服类为主呈现涨薪趋势,尤其以客服类,2024 年第四季度涨薪率达 25.5%;从全年度方面看,工程类岗位持续涨薪,展现较好的薪酬竞争优势。
浪潮电子近 2 年招聘变化率
浪潮电子近 1 年招聘薪酬趋势(单位:千元)
热招岗位速写
总体来看,浪潮信息提供的岗位覆盖了从初级到高级多个层次,薪资水平也因岗位和工作经验的不同而有所 差异。
公司注重高学历和经验丰富的候选人,同时也有一些岗位适合应届毕业生或无经验者。
特别是,其作为算力领域的典型代表企业,围绕算法相关工程师岗位需求尤为集中,例如算法研究院、大模型 算法工程师、机器学习算法工程师,等等,对于学历要求也基本要求为博士学历,其中尤以算法研究院,薪酬水 平可达 45k-75k/ 月。
以下提供部分热招岗位及就职要求,供参考。
浪潮信息热招岗位一览
东方国信
根据中商产业研究院整理的生成式人工智能产业链信息显示,东方国信作为国内机器学习领域的代表企业,目 前已形成大数据、云计算及移动互联三大技术体系,以自主研发的大数据产品及解决方案服务于通信、金融、 工业、智慧城市、公共安全、智慧旅游、农业、医疗、媒体、大数据运营等 10 余个行业和业务领域。
典型企业人才画像
报告发现,东方国信近两年整体岗位需求波动起伏角度,自 2023 年第一季度经历招聘峰值后呈断崖式缩招, 2024 年整体岗位需求低迷,直到 10 月份迎来短暂招聘黄金期后迅速趋于稳定。整体招聘薪酬方面,以 IT 类、 销售类表现更为积极。
东方国信近 2 年招聘变化率
东方国信近 1 年招聘薪酬趋势(单位:千元)
热招岗位速写
从目前该企业披露的招聘需求来看,公司整体岗位薪酬水平位居中等。其中,高级岗位如图像识别算法架构师、 大数据架构师等薪资较高,但对经验和专业技能要求较高,招聘薪酬区间分别为 1.5 万 -3 万 / 月、2.5 万 -4 万 / 月。
除此之外,公司整体招聘岗位学历要求以本科、硕士为主,硕士学历在一些特定岗位(如数据挖掘算法工程师、 AI 大模型工程师)上有优势,薪资也相对较高。
以下提供部分热招岗位及就职要求,供参考。
东方国信热招岗位一览
阿里巴巴
阿里巴巴作为中国的科技巨头,在云计算、大数据和人工智能等领域有着深厚的积累,特别是达摩院等机构作 为阿里 AI 研究方面的典型分支,在国内具有举足轻重的地位,取得多项突破,推动各项 AI 技术的发展和应用。
典型企业人才画像
数据显示,阿里巴巴近 2 年整体招聘需求波动明显,以 2023 年初招聘高峰后,进度长达整年的缩招状态,进 入 2024 年后分别以 2 月、7 月经历招聘峰值和低谷,猜测与行业整体发展以及校招等招聘旺季等因素有关。
而从近一年招聘薪酬表现上看,各类职能整体表现积极,其中仅以 IT 类岗位在 2024 年第四季度表现出微 弱降薪,涨薪率为 -0.4%。
阿里巴巴近 2 年招聘量变化率
阿里巴巴近 1 年招聘薪酬趋势(单位:千元)
热招岗位速写
作为国内极具代表性的“大厂”,阿里巴巴历来在薪酬竞争优势及人才储备方面表现亮眼。从近期披露的招聘数 据显示,达摩院作为阿里巴巴 AI 研究与探索的核心机构,在 AI 相关岗位预算方面优势明显,例如高性能算子 开发专家,月薪上限可达 8 万 / 月;再如 AI 处理器设计专家,薪酬范围达 4 万 -7 万 / 月。
岗位类型上,目前尤以 AI 芯片相关、机器学习、算法研发以及全栈大数据开发为主要方向。以下提供部分热招 岗位及就职要求,供参考。
阿里巴巴热招岗位一览
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**
一、2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1级别:AI大模型时代的华丽登场
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。
L2级别:AI大模型RAG应用开发工程
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3级别:大模型Agent应用架构进阶实践
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。
L4级别:大模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
二、大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
三、大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
四、大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
五、大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取