5分钟了解AI算法 之 隐式马尔可夫模型(Hidden Markov Model)

本文详细介绍了隐式马尔可夫模型(HMM),包括其基本元素如状态集合、行为集合、状态转移矩阵和行为概率矩阵,以及如何通过这些元素解决概率、学习和回归等问题。还讨论了模型在AI领域的具体应用,如行为预测、参数估计和状态分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、隐式马尔可夫模型 简介(Hidden Markov Model)

在之前的文章中已经介绍了马尔可夫链,马尔可夫模型与马尔可夫链的区别在于,隐马尔科夫模型多了一条不可见的时序状态。通过对该模型各参数的推导即可解决当前AI领域比较常见的三大基石问题:概率、学习、回归

二、隐式马尔科夫模型的基本元素

以小狗的日常行为为例,小狗的状态有高兴,恐惧和焦急,它表现的行为有摇尾巴、转圈、吠叫。

状态集合 Q:

小狗的状态集合=(高兴,恐惧,焦急)小狗的状态集合 =(高兴,恐惧,焦急)小狗的状态集合=(高兴,恐惧,焦急)
Q=(q1,q2,q3)Q =(q_1,q_2, q_3)Q=q1q2,q3

行为集合 L:

小狗的行为集合=(摇尾巴,原地转圈,吠叫){小狗的行为集合 = }(摇尾巴,原地转圈,吠叫)小狗的行为集合=(摇尾巴,原地转圈,吠叫)
L=(L1,L2,L3)L =(L_1, L_2,L_3)L=(L1,L2L3)

以时间T为发生顺序,状态变化的序列 I:

小狗的状态序列=(高兴,高兴,高兴,焦急,恐惧,恐惧) 小狗的状态序列=(高兴,高兴,高兴,焦急,恐惧,恐惧)小狗的状态序列=(高兴,高兴,高兴,焦急,恐惧,恐惧)
I=(i1,i2,i3,i4,i5)I = (i_1,i_2,i_3,i_4,i_5)I=(i1,i2,i3,i4,i5)

对应状态变化时的行为学列 O:

小狗的行为序列=(摇尾巴,摇尾巴,摇尾巴,原地转圈,吠叫,吠叫)小狗的行为序列= (摇尾巴,摇尾巴,摇尾巴,原地转圈,吠叫,吠叫)小狗的行为序列=(摇尾巴,摇尾巴,摇尾巴,原地转圈,吠叫,吠叫)
O=(o1,o2,o3,o4,...)O= (o_1, o_2,o_3,o_4,...)O=(o1,o2,o3,o4,...)

状态转移矩阵 A:

小狗的状态转移矩阵=[高兴恐惧焦急高兴0.40.30.3恐惧0.70.50.3焦急0.70.50.3] 小狗的状态转移矩阵=\left[ \begin{matrix} & 高兴 &恐惧 & 焦急\\ 高兴 & 0.4 & 0.3& 0.3 \\ 恐惧 & 0.7 & 0.5 & 0.3\\ 焦急 & 0.7 & 0.5& 0.3 \\ \end{matrix} \right] 小狗的状态转移矩阵=高兴恐惧焦急高兴0.40.70.7恐惧0.30.50.5焦急0.30.30.3
A=[aij]N∗NA = [a_{ij}]N*N A=[aij]NN
aij为是时刻t在变化到t+1时,qi状态转移到qj时的概率:a_{ij}为是时刻t在变化到t+1时,q_i状态转移到q_j时的概率:aij为是时刻t在变化到t+1时,qi状态转移到qj时的概率:
aij=P(it+1=qj∣it=qi)a_{ij}=P(i_t+1=q_j|i_t=q_i)aij=P(it+1=qjit=qi)

行为概率矩阵 B:

小狗的行为概率矩阵=[摇尾巴原地转圈吠叫0.40.30.30.70.50.30.70.50.3] 小狗的行为概率矩阵=\left[ \begin{matrix} 摇尾巴& 原地转圈 & 吠叫\\ 0.4 & 0.3& 0.3 \\ 0.7 & 0.5 & 0.3\\ 0.7 & 0.5& 0.3 \\ \end{matrix} \right] 小狗的行为概率矩阵=摇尾巴0.40.70.7原地转圈0.30.50.5吠叫0.30.30.3
B=[bi(k)]N∗MB=[b_i(k)]N*MB=[bi(k)]NM
bi(k)为是时刻qj状态时,产生行为vk的概率,即:b_i(k)为是时刻q_j状态时,产生行为v_k的概率,即:bi(k)为是时刻qj状态时,产生行为vk的概率,即:
bi(k)=P(ot=vk∣it=qj)b_i(k)=P(o_t= v_k|i_t=q_j)bi(k)=P(ot=vkit=qj)

隐式马尔可夫模型 M

输入:M=(A,B,H),输入:M = (A,B,H),输入:M=(ABH),
输出:O=(o1,o2,...)输出:O=(o_1, o_2, ...)输出:O=(o1,o2,...)

状态初始概率 H:

初始小狗状态=(摇尾巴)初始小狗状态=(摇尾巴)初始小狗状态=(摇尾巴)
H=(hi),hi在时刻t=1时,状态qii时的概率 H=(h_i),h_i在时刻t=1时,状态q_ii时的概率H=(hi)hi在时刻t=1时,状态qii时的概率

三、隐马尔科夫模型的用途

已知马尔科夫模型的内部元素后,就可以通过偏移矩阵计算解决相应参数的推导问题,即当前普遍应用在ai 3大基石问题:

  1. 回归问题:提供模型M = (A,B,H),和观测序列O,求序列O中的元素出现概率。
    求小狗的行为求小狗的行为求小狗的行为

  2. 机器学习:已知状态序列I和观测序列O,求M = (A,B,H)中A、B各参数。
    求小狗状态矩阵和小狗行为矩阵求小狗状态矩阵和小狗行为矩阵求小狗状态矩阵和小狗行为矩阵

  3. 分类问题:已知模型M和观测序列O,求状态序列I
    求小狗状态求小狗状态求小狗状态

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千年奇葩

从来没受过打赏,这玩意好吃吗?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值