今早5点,OpenAI分享了o系列模型的7大实际应用场景,包括处理模糊任务、从海量信息中提取关键信息、复杂文档推理与决策、多流程AIAgent、视觉推理、代码审查以及性能评估。
在这些实际案例中,一家金融分析平台通过o系列模型成功找出了影响收购的关键变更条款,帮助公司节省了7500万美元。
此外,还解读了o系列推理模型与效率型GPT系列模型的区别,帮助你在实际应用中该如何高效选择这两种模型。
7大实际应用场景
处理模糊任务
推理模型在处理模糊任务方面表现卓越。能够凭借有限或零散的信息,通过简单的提示,理解用户的意图,并处理指令中的信息缺口。Hebbia,一家专注于法律和金融领域的AI知识平台公司,使用o1模型处理复杂文档。
在处理信用协议时,o1模型仅通过一个基本提示,就能轻松识别出在受限支付能力下可用的篮子。与其他模型相比,o1在处理复杂提示时,在密集的信用协议上有52%的情况能够产生更优的结果。
从海量信息中提取关键信息
在面对大量非结构化信息时,推理模型能够准确理解并提取出最相关的信息来回答问题。Endex,一家AI金融情报平台,在分析一家公司的收购案时,使用o1模型审查了数十份公司文件,如合同和租约。