
Machine Learning
文章平均质量分 79
Jack_F
唉生活唉社交
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习实战之KMeans
from numpy import * def loadDataSet(fileName): dataMat = [] fr = open(fileName) for line in fr.readlines(): curLine = line.strip().split('\t') fltLine = map(float,curLine)原创 2013-07-08 15:03:40 · 2066 阅读 · 0 评论 -
机器学习实战之PCA
from numpy import * def loadDataSet(fileName, delim = '\t'): fr = open(fileName) stringArr = [line.strip().split(delim) for line in fr.readlines()] datArr = [map(float,line) for line in s原创 2013-07-09 20:40:44 · 2919 阅读 · 1 评论 -
机器学习实战之K近邻
from numpy import * import operator from cProfile import label import matplotlib import matplotlib.pyplot as plt from os import listdir def createDataSet(): group = array([1.0,1.1],[1.0,1.0],[0,0原创 2013-06-27 16:55:34 · 3373 阅读 · 0 评论 -
机器学习实战之决策树
from math import log import operator import matplotlib.pyplot as plt def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCounts = {} for featVec in dataSet: currentLabel原创 2013-06-29 10:02:55 · 3446 阅读 · 1 评论 -
机器学习实战之朴素贝叶斯
from numpy import * def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],原创 2013-06-29 16:55:34 · 2467 阅读 · 2 评论 -
并行逻辑回归
详解并行逻辑回归 来源新浪博客| 作者冯扬 摘要:Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性。这里是:“可能性”而非数学上的“概率”,logisitc回归的结果并非数学定义中的概率值,不可以直接当做概率值来用。 编者按:回归其实就是对已知公式的未知参数进行估计,Logistic regre转载 2014-02-15 11:13:48 · 2074 阅读 · 0 评论