MyScaleDB:SQL+向量驱动大模型和大数据新范式

MyScaleDB,一个开源的SQL向量数据库,旨在结合大模型和AI数据库的优势,提升大模型效率,实现大数据智能化。它在保留SQL完整性的基础上,提供高性能的向量检索,支持结构化、向量和关键字数据的联合查询,降低系统成本,提高查询精度。MyScaleDB已在多个行业场景中展现出提高AI应用精度和效率的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大模型和 AI 数据库双剑合璧,成为大模型降本增效,大数据真正智能的制胜法宝。

大模型(LLM)的浪潮已经涌动一年多了,尤其是以 GPT-4、Gemini-1.5、Claude-3 等为代表的模型你方唱罢我登场,成为当之无愧的风口。在 LLM 这条赛道上,有的研究专注于增加模型参数,有的疯狂卷多模态…… 这当中,LLM 处理上下文长度的能力成为了评估模型的一个重要指标,更强的上下文意味着模型拥有更强的检索性能。例如有些模型一口气可以处理高达 100 万 token 的能力让不少研究者开始思考,RAG (Retrieval-Augmented Generation,检索增强生成)方法还有存在的必要吗?

有人认为 RAG 要被长上下文模型杀死了,但这种观点遭到了很多研究者和架构师的反驳。他们认为一方面数据结构复杂、定期变化,并且很多数据具有重要的时间维度,这些数据对于 LLM 来说可能太复杂。另一方面,企业、行业的海量异构数据,都放到上下文窗口中也不现实。而大模型和 AI 数据库结合,给生成式 AI 系统注入专业、精准和实时的信息,大幅降低了幻觉,并提高了系统的实用性。同时,Data-centric LLM 的方法也可以利用 AI 数据库海量数据管理、查询的能力,大幅降低大模型训练、微调的开销,并支持在系统不同场景的小样本调优。总结来说,大模型和 AI 数据库双剑合璧,既给大模型降本增效,又让大数据真正实现智能

历经数年开发和迭代,MyScaleDB 终于开源

RAG 的出现使得 LLM 能从大规模的知识库中精确地抽取信息,并生成实时、专业、富有洞察力的答案。伴随而来的是 RAG 系统的核心功能向量数据库也得到了迅速发展,按照向量数据库的设计理念我们可以将其大致分为三类:专用向量数据库,关键字和向量结合的检索系统,以及 SQL 向量数据库。

  • 以 Pinecone/Weaviate/Milvus 为代表的专用向量数据库,一开始即为向量检索设计打造,向量检索性能出色,不过通用的数据管理功能较弱。

  • 以 E

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值