高并发导出场景下,服务器性能瓶颈通常出现在 CPU、内存、磁盘 I/O 或网络带宽等方面。为了解决这些问题,可以从以下几个方面进行优化:
1. 优化导出逻辑
-
减少计算复杂度:检查导出逻辑中是否存在不必要的计算或重复操作,尽量简化处理流程。
-
批量处理:将数据分批处理,避免一次性加载大量数据到内存中。
-
异步处理:将导出任务放入任务队列(如 Celery、RabbitMQ),异步处理导出请求,避免阻塞主线程。
-
缓存中间结果:如果导出数据变化不频繁,可以使用缓存(如 Redis)存储中间结果,减少重复计算。
2. 优化数据库查询
-
索引优化:确保查询字段有合适的索引,避免全表扫描。
-
分页查询:使用分页查询(如
LIMIT
和OFFSET
)减少单次查询的数据量。 -
减少 JOIN 操作:如果查询涉及多表 JOIN,尽量优化表结构或使用冗余字段减少 JOIN 操作。
-
读写分离:将读操作和写操作分离到不同的数据库实例,减轻主库压力。
3. 优化文件生成
-
流式处理:使用流式处理生成文件(如 CSV、Excel),避免将整个文件加载到内存中。
-
示例
-