技术交流QQ群【JAVA,.NET,BigData,AI】:170933152
看书写程序,边看边写...
#1. 在Python 中一般会采用“ import tensorflow as tf”的形式来载入TensorFlow ,这样可以 # 使用“ tf”来代替“ tensorflow ”作为模块名称,使得整个程序更加简洁。这是TensorFlow # 中非常常用的技巧,在本书后面的章节中将会全部采用这种加载万式。在这个过程中, # Tensor Flow 会自动将定义的计算转化为计算图上的节点。在TensorFlow 程序中,系统会自 # 动维护一个默认的计算图,通过tf.get_default_graph 函数可以获取当前默认的计算图。 import tensorflow as tf # TensorFlow 程序一般可以分为两个阶段。在第一个阶段需要定义计算图中所有的计算。 # 首先定义了两个输入,然后定义了一个计算来得到它们的和。以下代码给出了计算定义 # 阶段的样例。 a = tf.constant([1.0, 2.0], name="a") b = tf.constant([2.0, 3.0], name="b") result = a + b #通过a . graph 可以查看张量所属的计算图。因为没有特意指定,所以这个计算图应该等于 #当前默认的计算图。所以下面这个操作输出值为True 。 print(a.graph is tf.get_default_graph())