人工智能TensorFlow工作笔记005---计算图的基本应用_认识计算图

本文是关于人工智能中TensorFlow使用的工作笔记,主要探讨计算图的基本概念和应用,适合初学者了解和学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

技术交流QQ群【JAVA,.NET,BigData,AI】:170933152   

看书写程序,边看边写... 

#1. 在Python 中一般会采用“ import tensorflow as tf”的形式来载入TensorFlow ,这样可以
# 使用“ tf”来代替“ tensorflow ”作为模块名称,使得整个程序更加简洁。这是TensorFlow
# 中非常常用的技巧,在本书后面的章节中将会全部采用这种加载万式。在这个过程中,
# Tensor Flow 会自动将定义的计算转化为计算图上的节点。在TensorFlow 程序中,系统会自
# 动维护一个默认的计算图,通过tf.get_default_graph 函数可以获取当前默认的计算图。
import tensorflow as tf

# TensorFlow 程序一般可以分为两个阶段。在第一个阶段需要定义计算图中所有的计算。
# 首先定义了两个输入,然后定义了一个计算来得到它们的和。以下代码给出了计算定义
# 阶段的样例。
a = tf.constant([1.0, 2.0], name="a")
b = tf.constant([2.0, 3.0], name="b")

result = a + b

#通过a . graph 可以查看张量所属的计算图。因为没有特意指定,所以这个计算图应该等于
#当前默认的计算图。所以下面这个操作输出值为True 。
print(a.graph is tf.get_default_graph())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

添柴程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值