【国密】SM2 椭圆曲线公钥密码算法(附源码分析)

本文详细介绍了基于椭圆曲线的SM2算法,包括椭圆曲线的基础概念、点加与倍点运算,以及SM2算法在数字签名和公钥加密中的应用。SM2算法利用椭圆曲线离散对数问题的难度提供安全保障,其数字签名过程确保了签名的不可伪造性,而公钥加密则保证了通信的机密性。文章还提供了GmSSL库的源码分析,加深理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

Koblitz与Miller分别于1985年各自独立地将椭圆曲线应用于公钥密码系统。椭圆曲线有如下性质:

  • 有限域上椭圆曲线在点加运算下构成有限交换群,且阶与基域规模相近;
  • 类似于有限域乘法群的乘幂运算,椭圆曲线多倍点运算构成一个单向函数。

本文要介绍的SM2算法即为一种椭圆曲线密码算法(elliptic curve cryptograph,ECC)。ECC安全性依赖于椭圆曲线离散对数问题(elliptic curve discrete logarithm problem,ECDLP) 的困难性。在多倍点运算中,

Q = [ k ] P Q = [k] P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浅唱书令

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值