
OpenCVSharp实战篇
文章平均质量分 87
从0~1分享OpenCVSharp上手与实战,结合项目实际需求分享真实案例
Leon@Lee
爱好广泛
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
TIFF 图像融合技术:多帧累加与高动态范围重建
在科学成像、天文观测、医学图像处理等领域,经常需要处理低信噪比的图像数据。单帧图像可能受限于传感器噪声、弱光环境或短曝光时间,导致细节丢失或难以分析。通过多帧图像融合技术,可以有效提高图像质量,增强细节可见性。TIFF (Tagged Image File Format) 作为一种灵活的图像格式,支持多种数据类型 (如 8 位、16 位、32 位浮点数) 和颜色空间,特别适合存储高动态范围 (HDR) 图像和科学数据。本文介绍的 TIFF 图像融合技术,主要针对多帧同一场景的 TIFF 图像进行累加融合,以原创 2025-05-15 11:07:43 · 1003 阅读 · 0 评论 -
使用 OpenCV 实现多图片合成叠加:从基础到实践
支持多通道图像自动适配包含完善的错误处理机制实现高效的区域融合算法提供灵活的参数配置接口通过调整中的坐标和透明度参数,可轻松实现各类图像合成需求。实际应用中可根据具体场景扩展尺寸适配策略和融合算法,进一步提升合成效果。如需处理更复杂的合成需求(如透视变换、颜色空间转换),可结合 OpenCV 的矩阵变换和色彩空间转换函数进行扩展。原创 2025-05-13 16:46:35 · 769 阅读 · 0 评论 -
深入理解图像逐像素叠加技术:原理、实现与应用
逐像素叠加技术是图像处理的基础,通过对相同大小图像的每个像素进行精确控制,可以实现丰富多样的应用。本文详细介绍了图像叠加的原理、不同编程语言的实现方法、性能优化策略以及实际应用场景。在实际应用中,需要根据具体需求选择合适的叠加算法和实现方式。对于性能敏感的场景,可以考虑使用向量化操作、并行计算或 GPU 加速。未来,随着硬件性能的提升和算法的不断优化,图像叠加技术将在更多领域发挥重要作用,如虚拟现实、增强现实、自动驾驶等。原创 2025-05-13 16:59:40 · 746 阅读 · 0 评论 -
基于 OpenCV 的图片质量检测方案
基于拉普拉斯方差的清晰度检测方案和基于 BRISQUE 算法的无参考图像质量评估方案各有优缺点。如果需要对图像的质量进行全面评估,且对计算资源有一定的承受能力,可以选择基于 BRISQUE 算法的方案。OpenCV 作为一个强大的开源计算机视觉库,提供了丰富的工具和算法,可以帮助我们实现图片质量检测。BRISQUE(Blind/Referenceless Image Spatial QUality Evaluator)是一种无参考图像质量评估算法,它不需要参考图像就可以对图像的质量进行评估。原创 2025-05-08 20:51:47 · 479 阅读 · 0 评论 -
OpenCvSharp 中 MatType 与 C# 数据类型对应关系及典型问题分析
数值截断:如 16 位数据转 8 位时直接丢失高 8 位。符号错误:有符号类型与无符号类型混用(如 sbyte→byte)。内存越界:类型长度不匹配(如用 int 读取 byte 数据,导致读取 4 字节而非 1 字节)。正确匹配 MatType 与 C# 类型是避免像素值错误的核心,尤其是多通道场景(如彩色图像的 BGR 通道)和高精度场景(如浮点运算)。原创 2025-05-07 09:16:22 · 842 阅读 · 0 评论 -
OpenCVSharp 之 video 模块深入剖析
OpenCVSharp 的video模块为开发者提供了丰富的视频处理功能,包括视频的读取与写入、运动分析、视频稳定,以及在 Unity 和 WPF 中渲染视频帧等。这些功能在安防监控、自动驾驶、视频编辑等领域都有广泛的应用。在实际应用中,开发者可以根据具体的需求选择合适的功能,并结合其他模块的功能,实现更复杂的视频处理任务。同时,也需要注意各个功能的优缺点,根据实际情况进行优化和调整,以达到最佳的处理效果。原创 2025-04-27 09:05:49 · 978 阅读 · 0 评论 -
OpenCVSharp 之 objdetect 模块深度解析
Haar 级联分类器基于 Haar 特征与 AdaBoost 算法。Haar 特征是一种简单的矩形特征,通过计算图像中不同区域的像素和差值来描述图像的局部特征。AdaBoost 算法则用于训练这些特征,选择出最具区分性的特征组合,形成级联分类器。级联分类器采用分层结构,每一层都对输入图像进行快速筛选,不符合条件的区域会被迅速排除,从而提高检测效率。HOG(Histogram of Oriented Gradients,方向梯度直方图)是一种用于描述图像局部纹理特征的特征描述符。原创 2025-04-25 19:31:48 · 694 阅读 · 0 评论 -
OpenCVSharp 之 imgproc 模块深度剖析
色彩空间转换是图像处理中常见的操作,不同的色彩空间适用于不同的应用场景。imgproc模块提供了多种色彩空间转换的方法,如将 RGB 图像转换为灰度图像、HSV 图像等。图像滤波是一种用于平滑图像、去除噪声或增强图像特征的技术。imgproc模块提供了多种滤波方法,如均值滤波、高斯滤波、中值滤波等。边缘检测是图像处理中的重要任务,用于检测图像中物体的边缘。imgproc模块提供了多种边缘检测算法,如 Canny 边缘检测、Sobel 边缘检测、Prewitt 边缘检测、Laplacian 边缘检测等。原创 2025-04-25 19:22:33 · 1111 阅读 · 0 评论 -
深入剖析 OpenCVSharp 中的 Core 模块
Core 模块是 OpenCVSharp 最基础的模块,它定义了许多核心的数据结构和函数,这些数据结构和函数贯穿于整个 OpenCVSharp 的使用过程中。Core 模块的主要功能包括矩阵操作、数据类型管理、绘图功能、数学运算以及内存管理等。可以说,Core 模块是 OpenCVSharp 的核心基础,其他模块如 imgproc、objdetect 等都依赖于 Core 模块提供的基础功能。Core 模块是 OpenCVSharp 的核心基础,它提供了丰富的核心数据结构和基础操作。原创 2025-04-25 19:14:52 · 527 阅读 · 0 评论 -
深入 OpenCvSharp 核心模块:从基础到实战(一)—— 入门篇
Mat本文介绍了 OpenCvSharp 的核心模块coreimgprocobjdetectvideo的基础功能与实战应用,它们是计算机视觉开发的 “基石”。后续文章将深入探讨深度学习模块dnn特征检测模块features2d以及性能优化技巧,帮助您从入门走向进阶。原创 2025-04-25 17:34:43 · 963 阅读 · 0 评论 -
深入解析 OpenCvSharp 核心数据结构:Mat 矩阵类
Mat(Matrix 的缩写)类用于表示多维矩阵,可以存储图像、向量、矩阵等多种数据类型。在计算机视觉应用中,它主要用于存储和处理图像数据。无论是彩色图像、灰度图像,还是 3D 点云数据,都可以通过Mat类进行表示和操作。与传统的 C# 数组相比,Mat类在内存管理、数据访问和处理效率上具有显著优势,更适合处理大规模图像数据。Mat矩阵类是 OpenCvSharp 的核心数据结构,掌握其特性和使用方法是进行计算机视觉开发的基础。本文从基本概念、创建初始化、核心操作、内存管理、高级应用等多个方面对Mat。原创 2025-04-25 19:10:41 · 1117 阅读 · 0 评论