【动手学深度学习】代码

该博客系列涵盖了从线性回归到softmax回归,再到多层感知机的深度学习基础知识。包括数据操作、模型选择、欠拟合与过拟合的探讨,以及权重衰减和丢弃法等优化技术。同时,还涉及了房价预测问题的解决,并提供了多个动手实践的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【动手学深度学习】代码

内容

文件名内容
.ipynb_checkpointsjupyter lab检查点
_pycache_python根目录
DataOperation.ipynb数据操作
LinearRegression.ipynb线性回归
ImageCfDataSet.ipynb图像分类数据集
softmaxRegression.ipynbsoftmax回归基础知识
softmaxRegression_diy.ipynbsoftmax回归手写实现
softmaxRegression_gluon.ipynbsoftmax回归简洁实现
multiLayerPerceptron.ipynb多层感知机基础知识
multiLayerPerceptron_diy.ipynb多层感知机手写实现
multiLayerPerceptron_gluon.ipynb多层感知机简洁实现
utils.py含有很多预定义好的函数,可以直接调用
modelSelect_under-fitting_over-fitting.ipynb模型选择、欠拟合与过拟合
weightAttenuation.ipynb权重衰减
invertedDropout.ipynb丢弃法
forbackPropagaComputeGraphs.ipynb正向传播、反向传播和计算图
kaggleHousepricePrediction.ipynbkaggle:房价预测
kaggle_house_pred_test.csvkaggle房价预测测试集
kaggle_house_pred_train.csvkaggle房价预测训练测试集
submission.csv房价预测结果文件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeeGLMath

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值