无约束优化方法(optimtool.unconstrain)

本文介绍了optimtool库中用于无约束优化的几种方法,包括梯度下降法、牛顿法、拟牛顿法、非线性最小二乘法和信赖域方法,并提供了一个示例函数f(x),详细阐述了这些算法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import optimtool as oo
from optimtool.base import np, sp, plt
pip install optimtool>=2.4.2

无约束优化方法(optimtool.unconstrain)

import optimtool.unconstrain as ou
ou.[方法名].[函数名]([目标函数], [参数表], [初始迭代点])

f(x)=∑i=1n/2(−13+x2i−1+((5−x2i)x2i−2)x2i)2+(−29+x2i−1+((x2i+1)x2i−14)x2i)2,x0=[0.5,−2,0.5,−2,...,0.5,−2]. f(x)=\sum_{i=1}^{n/2}(-13+x_{2i-1}+((5-x_{2i})x_{2i}-2)x_{2i})^2+(-29+x_{2i-1}+((x_{2i}+1)x_{2i}-14)x_{2i})^2, x_0=[0.5, -2, 0.5, -2, ..., 0.5, -2]. f(x)=i=1n/2(13+x2i1+((5x2i)x2i2)x2i)2+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeeGLMath

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值