使用SageMaker自定义端点进行嵌入生成

技术背景介绍

在人工智能的自然语言处理(NLP)任务中,生成文本嵌入是一个重要步骤。Amazon SageMaker 提供了一种简便的方法来托管自定义NLP模型,并通过其端点生成嵌入。这篇文章将介绍如何在SageMaker上托管Hugging Face模型,并通过自定义的类来进行嵌入生成。

核心原理解析

SageMaker 端点允许用户托管预训练的机器学习模型并通过API进行调用。通过使用SagemakerEndpointEmbeddings类,我们可以与托管在SageMaker上的模型交互以生成文本嵌入。

为了处理批量请求,需要对inference.py脚本中的predict_fn()函数进行调整。将返回行由:

return {"vectors": sentence_embeddings[0].tolist()}

更改为:

return {"vectors": sentence_embeddings.tolist()}

这确保了返回的嵌入向量是批量化的。

代码实现演示(重点)

以下是一个完整的示例,展示如何配置和使用SageMaker端点来生成文本嵌入:

!pip3 install langchain boto3

import json
from typing import Dict, List
from langchain_community.embeddings import SagemakerEndpointEmbeddings
from langchain_community.embeddings.sagemaker_endpoint import EmbeddingsContentHandler

class ContentHandler(EmbeddingsContentHandler):
    content_type = "application/json"
    accepts = "application/json"

    def transform_input(self, inputs: list[str], model_kwargs: Dict) -> bytes:
        input_str = json.dumps({"inputs": inputs, **model_kwargs})
        return input_str.encode("utf-8")

    def transform_output(self, output: bytes) -> List[List[float]]:
        response_json = json.loads(output.read().decode("utf-8"))
        return response_json["vectors"]

content_handler = ContentHandler()

embeddings = SagemakerEndpointEmbeddings(
    endpoint_name="huggingface-pytorch-inference-2023-03-21-16-14-03-834",
    region_name="us-east-1",
    content_handler=content_handler,
)

query_result = embeddings.embed_query("foo")
doc_results = embeddings.embed_documents(["foo"])

print(doc_results)

代码说明:

  • ContentHandler类用于定义输入和输出的转换方式。
  • SagemakerEndpointEmbeddings用于与SageMaker端点交互,生成嵌入。

应用场景分析

此实现特别适用于需要生成大规模文本嵌入以支持搜索、推荐系统以及上下文相关分析的应用场景。通过SageMaker的弹性计算能力,可以有效处理大量的嵌入生成请求。

实践建议

  1. 初始化优化: 确保使用的是最新版本的SageMaker和相关的Python包,如boto3
  2. 安全性: 务必妥善管理和存储你的AWS凭证,建议使用IAM角色分离权限。
  3. 性能提升: 调整inference.py以适应批量处理请求,提升吞吐量。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值