bzoj3512 DZY Loves Math IV 欧拉函数+杜教筛

本文深入探讨了数论中的杜教筛算法,详细解析了如何通过质因子分解和欧拉函数的性质来简化复杂的数学求和问题,提供了一段C++实现代码,展示了算法在解决特定数论问题上的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目分析

好难不会QAQ。

S(n,m)=∑i=1mϕ(im)S(n,m)=\sum_{i=1}^m \phi(im)S(n,m)=i=1mϕ(im)

wwwnnn的所有质因子的(一次方)乘积,v=nwv=\frac{n}{w}v=wnd=gcd(w,i)d=gcd(w,i)d=gcd(w,i),根据欧拉函数的性质,则有:

S(n,m)=v∑i=1mϕ(iw)=v∑i=1mϕ(i)ϕ(wd)dS(n,m)=v\sum_{i=1}^m \phi(iw)=v\sum_{i=1}^m \phi(i) \phi(\frac{w}{d})dS(n,m)=vi=1mϕ(iw)=vi=1mϕ(i)ϕ(dw)d

∑t∣dϕ(t)=d\sum_{t|d} \phi(t)=dtdϕ(t)=d

S(n,m)=v∑i=1mϕ(i)ϕ(wd)∑t∣dϕ(t)=v∑i=1mϕ(i)ϕ(wd)∑t∣dϕ(dt)S(n,m)=v \sum_{i=1}^m \phi(i) \phi(\frac{w}{d}) \sum_{t|d} \phi(t)=v \sum_{i=1}^m \phi(i) \phi(\frac{w}{d}) \sum_{t|d} \phi(\frac{d}{t})S(n,m)=vi=1mϕ(i)ϕ(dw)tdϕ(t)=vi=1mϕ(i)ϕ(dw)tdϕ(td)

看向ϕ(wd)∑t∣dϕ(dt)\phi(\frac{w}{d})\sum_{t|d} \phi(\frac{d}{t})ϕ(dw)tdϕ(td)这个玩意,因为www的每种质因子都只存在一个,所以wd\frac{w}{d}dw不含ddd中的任何质因子,所以wd\frac{w}{d}dwdt\frac{d}{t}td互质,所以这玩意等于∑t∣w且t∣iϕ(wt)\sum_{t|w且t|i}\phi(\frac{w}{t})twtiϕ(tw)

所以S(n,m)=v∑i=1mϕ(i)∑t∣w且t∣iϕ(wt)=v∑t∣wϕ(wt)∑i=1wtϕ(it)S(n,m)=v \sum_{i=1}^m \phi(i)\sum_{t|w且t|i}\phi(\frac{w}{t})=v\sum_{t|w}\phi(\frac{w}{t})\sum_{i=1}^{\frac{w}{t}} \phi(it)S(n,m)=vi=1mϕ(i)twtiϕ(tw)=vtwϕ(tw)i=1twϕ(it)

也就是S(n,m)=v∑t∣mϕ(wt)S(t,wt)S(n,m)=v\sum_{t|m} \phi(\frac{w}{t})S(t,\frac{w}{t})S(n,m)=vtmϕ(tw)S(t,tw)

n=1n=1n=1的时候用杜教筛,否则递归处理。

复杂度咋证我也不知道。

代码

#include<bits/stdc++.h>
using namespace std;
#define RI register int
const int mod=1e9+7,N=5000000;
int n,m,ans,tot,pri[N+5],is[N+5],phi[N+5],sumphi[N+5],w[N+5];
typedef pair<int,int> PR;
map<int,int> mp2;
map<PR,int> mp1;

int qm(int x) {return x>=mod?x-mod:x;}
void prework() {
	phi[1]=w[1]=1;
	for(RI i=2;i<=N;++i) {
		if(!is[i]) pri[++tot]=i,phi[i]=i-1,w[i]=i;
		for(RI j=1;j<=tot&&pri[j]*i<=N;++j) {
			is[pri[j]*i]=1;
			if(i%pri[j]==0) {
				phi[i*pri[j]]=1LL*phi[i]*pri[j]%mod;
				w[i*pri[j]]=w[i];break;
			}
			else {
				phi[i*pri[j]]=1LL*phi[i]*phi[pri[j]]%mod;
				w[i*pri[j]]=1LL*w[i]*pri[j]%mod;
			}
		}
	}
	for(RI i=1;i<=N;++i) sumphi[i]=qm(sumphi[i-1]+phi[i]);
}
int du_seive(int n) {
	if(n<=N) return sumphi[n];
	if(mp2.count(n)) return mp2[n];
	int re=(1LL*n*(n+1)/2)%mod;
	for(RI i=2,j;i<=n;i=j+1)
		j=n/(n/i),re=qm(re-1LL*(j-i+1)*du_seive(n/i)%mod+mod);
	mp2[n]=re;return re;
}
int work(int n,int m) {
	if(!n||!m) return 0;
	if(n==1) return du_seive(m);
	if(m==1) return phi[n];
	if(mp1.count((PR){n,m})) return mp1[(PR){n,m}];
	int re=0;
	for(RI i=1;i*i<=w[n];++i) if(w[n]%i==0) {
		re=qm(re+1LL*phi[w[n]/i]*work(i,m/i)%mod);
		if(i!=w[n]/i) re=qm(re+1LL*phi[i]*work(w[n]/i,m/(w[n]/i))%mod);
	}
	re=1LL*re*(n/w[n])%mod,mp1[(PR){n,m}]=re;return re;
}
int main()
{
	scanf("%d%d",&n,&m);
	prework();
	for(RI i=1;i<=n;++i) ans=qm(ans+work(i,m));
	printf("%d\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值