题目分析
好难不会QAQ。
设S(n,m)=∑i=1mϕ(im)S(n,m)=\sum_{i=1}^m \phi(im)S(n,m)=∑i=1mϕ(im)
设www为nnn的所有质因子的(一次方)乘积,v=nwv=\frac{n}{w}v=wn,d=gcd(w,i)d=gcd(w,i)d=gcd(w,i),根据欧拉函数的性质,则有:
S(n,m)=v∑i=1mϕ(iw)=v∑i=1mϕ(i)ϕ(wd)dS(n,m)=v\sum_{i=1}^m \phi(iw)=v\sum_{i=1}^m \phi(i) \phi(\frac{w}{d})dS(n,m)=v∑i=1mϕ(iw)=v∑i=1mϕ(i)ϕ(dw)d
知∑t∣dϕ(t)=d\sum_{t|d} \phi(t)=d∑t∣dϕ(t)=d
则S(n,m)=v∑i=1mϕ(i)ϕ(wd)∑t∣dϕ(t)=v∑i=1mϕ(i)ϕ(wd)∑t∣dϕ(dt)S(n,m)=v \sum_{i=1}^m \phi(i) \phi(\frac{w}{d}) \sum_{t|d} \phi(t)=v \sum_{i=1}^m \phi(i) \phi(\frac{w}{d}) \sum_{t|d} \phi(\frac{d}{t})S(n,m)=v∑i=1mϕ(i)ϕ(dw)∑t∣dϕ(t)=v∑i=1mϕ(i)ϕ(dw)∑t∣dϕ(td)
看向ϕ(wd)∑t∣dϕ(dt)\phi(\frac{w}{d})\sum_{t|d} \phi(\frac{d}{t})ϕ(dw)∑t∣dϕ(td)这个玩意,因为www的每种质因子都只存在一个,所以wd\frac{w}{d}dw不含ddd中的任何质因子,所以wd\frac{w}{d}dw和dt\frac{d}{t}td互质,所以这玩意等于∑t∣w且t∣iϕ(wt)\sum_{t|w且t|i}\phi(\frac{w}{t})∑t∣w且t∣iϕ(tw)。
所以S(n,m)=v∑i=1mϕ(i)∑t∣w且t∣iϕ(wt)=v∑t∣wϕ(wt)∑i=1wtϕ(it)S(n,m)=v \sum_{i=1}^m \phi(i)\sum_{t|w且t|i}\phi(\frac{w}{t})=v\sum_{t|w}\phi(\frac{w}{t})\sum_{i=1}^{\frac{w}{t}} \phi(it)S(n,m)=v∑i=1mϕ(i)∑t∣w且t∣iϕ(tw)=v∑t∣wϕ(tw)∑i=1twϕ(it)
也就是S(n,m)=v∑t∣mϕ(wt)S(t,wt)S(n,m)=v\sum_{t|m} \phi(\frac{w}{t})S(t,\frac{w}{t})S(n,m)=v∑t∣mϕ(tw)S(t,tw)
当n=1n=1n=1的时候用杜教筛,否则递归处理。
复杂度咋证我也不知道。
代码
#include<bits/stdc++.h>
using namespace std;
#define RI register int
const int mod=1e9+7,N=5000000;
int n,m,ans,tot,pri[N+5],is[N+5],phi[N+5],sumphi[N+5],w[N+5];
typedef pair<int,int> PR;
map<int,int> mp2;
map<PR,int> mp1;
int qm(int x) {return x>=mod?x-mod:x;}
void prework() {
phi[1]=w[1]=1;
for(RI i=2;i<=N;++i) {
if(!is[i]) pri[++tot]=i,phi[i]=i-1,w[i]=i;
for(RI j=1;j<=tot&&pri[j]*i<=N;++j) {
is[pri[j]*i]=1;
if(i%pri[j]==0) {
phi[i*pri[j]]=1LL*phi[i]*pri[j]%mod;
w[i*pri[j]]=w[i];break;
}
else {
phi[i*pri[j]]=1LL*phi[i]*phi[pri[j]]%mod;
w[i*pri[j]]=1LL*w[i]*pri[j]%mod;
}
}
}
for(RI i=1;i<=N;++i) sumphi[i]=qm(sumphi[i-1]+phi[i]);
}
int du_seive(int n) {
if(n<=N) return sumphi[n];
if(mp2.count(n)) return mp2[n];
int re=(1LL*n*(n+1)/2)%mod;
for(RI i=2,j;i<=n;i=j+1)
j=n/(n/i),re=qm(re-1LL*(j-i+1)*du_seive(n/i)%mod+mod);
mp2[n]=re;return re;
}
int work(int n,int m) {
if(!n||!m) return 0;
if(n==1) return du_seive(m);
if(m==1) return phi[n];
if(mp1.count((PR){n,m})) return mp1[(PR){n,m}];
int re=0;
for(RI i=1;i*i<=w[n];++i) if(w[n]%i==0) {
re=qm(re+1LL*phi[w[n]/i]*work(i,m/i)%mod);
if(i!=w[n]/i) re=qm(re+1LL*phi[i]*work(w[n]/i,m/(w[n]/i))%mod);
}
re=1LL*re*(n/w[n])%mod,mp1[(PR){n,m}]=re;return re;
}
int main()
{
scanf("%d%d",&n,&m);
prework();
for(RI i=1;i<=n;++i) ans=qm(ans+work(i,m));
printf("%d\n",ans);
return 0;
}