目录
- 引言
- DeepSeek R1 体系概览
- 训练方法:强化学习激发推理能力
- Benchmark 测试结果:DeepSeek R1 vs. 竞品
- 局限性与未来方向
- 结论
- 附录:示例与引用
引言
在 AI 竞赛日益激烈的时代,DeepSeek-AI 推出了 DeepSeek R1,试图以强化学习(RL) 直接训练推理能力,而非仅依赖传统的监督微调(SFT)。这一思路不仅为大规模语言模型(LLMs)带来了新的训练范式,还在跨任务推理迁移上表现出潜力。
本文将深入解析 DeepSeek R1 的架构、训练方法和对比实验,并从多维度审视其局限性与未来发展方向。同时,我们也会在文中介绍 DeepSeek R1 蒸馏到多个小规模模型的过程及其在下游任务的效果表现,以期为学术与开源社区提供可参考的实践经验。