【技术解密】深入解析 DeepSeek R1:强化学习如何驱动大模型推理能力的进化

目录

  1. 引言
  2. DeepSeek R1 体系概览
  3. 训练方法:强化学习激发推理能力
  4. Benchmark 测试结果:DeepSeek R1 vs. 竞品
  5. 局限性与未来方向
  6. 结论
  7. 附录:示例与引用

引言

在 AI 竞赛日益激烈的时代,DeepSeek-AI 推出了 DeepSeek R1,试图以强化学习(RL) 直接训练推理能力,而非仅依赖传统的监督微调(SFT)。这一思路不仅为大规模语言模型(LLMs)带来了新的训练范式,还在跨任务推理迁移上表现出潜力。
本文将深入解析 DeepSeek R1 的架构、训练方法和对比实验,并从多维度审视其局限性与未来发展方向。同时,我们也会在文中介绍 DeepSeek R1 蒸馏到多个小规模模型的过程及其在下游任务的效果表现,以期为学术与开源社区提供可参考的实践经验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海棠AI实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值