C++ 斐波那契数列(Fibonacci Sequence)

本文介绍使用C++实现斐波那契数列的多种方法,包括迭代、递归、公式计算、队列及数组等方式,并提供完整的源代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C++ 斐波那契数列(Fibonacci Sequence)

一、斐波那契数列

指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……
在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)。

也可用矩阵来表示:斐波那契矩阵表示

斐波那契数列在自然生活中无处不在,花瓣数目、黄金分割、杨辉三角、近似的股票波动周期等。

这里写图片描述
这里写图片描述

二、源代码:

#include <iostream>
#include <iomanip>
#include <memory>
#include <queue>
#include <vector>
#include <cmath>

using namespace std;

//Iteration
unsigned long long Fib_Iteration(unsigned long long fib) {
	if (fib > 2) {
		auto a1 = 1, a2 = 2, a3 = 0;
		for (auto i = 0; i < fib - 2; ++i) {
			a3 = a1 + a2;
			a1 = a2;
			a2 = a3;
		}
		return a3;
	}
	else if (fib == 2) {
		return 2;
	}
	else if (fib == 1) {
		return 1;
	}
	return 1;
}

//Recursive
unsigned long long Fib_Recursive(unsigned long long fib) {
	if (fib > 2) {
		return (Fib_Recursive(fib - 1) + Fib_Recursive(fib - 2));
	}
	else if (2 == fib) {
		return 2;
	}
	else if (1 == fib) {
		return 1;
	}
	return 1;
}

//Formula
unsigned long long Fib_Formula(unsigned long long fib) {
	if (fib > 0) {
		double square_root_5 = sqrt((double)5);
		return (pow((1 + square_root_5), (double)(fib + 1)) - pow((1 - square_root_5), (double)(fib + 1))) / (pow((double)2, (double)(fib + 1))*square_root_5);
	}
	return 1;
}

//Queue
unsigned long long Fib_Queue(unsigned long long fib) {
	if (fib > 2) {
		queue<unsigned long long> resultQueue;
		resultQueue.push(1);
		resultQueue.push(2);
		for (auto i = 2; i < fib; ++i) {
			resultQueue.push(resultQueue.front() + resultQueue.back());
			resultQueue.pop();
		}
		return resultQueue.back();
	}
	else if (2 == fib) {
		return 2;
	}
	else if (1 == fib) {
		return 1;
	}
	return 1;
}

//Array
unsigned long long Fib_Array(unsigned long long fib) {
	unsigned long long result = 1;
	if (fib > 2) {
		unique_ptr<unsigned long long[]> pArray(new unsigned long long[fib]);
		pArray[0] = 1;
		pArray[1] = 2;
		unsigned long long i;

		for (i = 2; i < fib; ++i) {
			pArray[i] = pArray[i - 1] + pArray[i - 2];
		}
		result = pArray[i - 1];
	}
	else if (2 == fib) {
		return 2;
	}
	else if (1 == fib) {
		return 1;
	}
	return result;
}

//Vector
unsigned long long Fib_Vector(unsigned long long fib) {
	if (fib > 2) {
		vector<unsigned long long> resultVec;
		resultVec.reserve(fib);
		resultVec.push_back(1);
		resultVec.push_back(2);
		unsigned long long i;

		for (i = 2; i < fib; ++i) {
			resultVec.push_back(resultVec.at(i - 1) + resultVec.at(i - 2));
		}
		return resultVec.at(i - 1);
	}
	else if (2 == fib) {
		return 2;
	}
	else if (1 == fib) {
		return 1;
	}
	return 1;
}

int main() {
	unsigned long long ii;
	while (cin >> ii) {
		for (auto i = 0; i <= ii; ++i) {
			//cout << Fib_Iteration(i) << endl;
			//cout << Fib_Recursive(i) << endl;
			//cout << Fib_Formula(i) << endl;
			//cout << Fib_Queue(i) << endl;
			//cout << Fib_Array(i) << endl;
			cout << Fib_Vector(i) << endl;
		}
	}

	/*while (cin >> ii) {
		for (auto i = 0; i <= ii; ++i) {
			cout << Fib_Vector(i) << setw(20);
			cout << Fib_Array(i) << setw(20);
			cout << Fib_Formula(i) << setw(20);
			cout << Fib_Queue(i) << setw(20);
			cout << Fib_Recursive(i) << setw(20);
			cout << Fib_Iteration(i) << endl;
		}
	}*/
	
	return 0;
}
### C++ 实现斐波那契数列 #### 示例代码解释 在C++中实现斐波那契数列可以通过多种方法完成,这里展示一种常见的递归方式来计算斐波那契数列中的特定项。 ```cpp #include <iostream> using namespace std; // 定义函数用于返回第n个斐波那契数值 int fibonacci(int n) { if (n <= 1) { // 当n小于等于1时直接返回n本身作为结果 return n; } return fibonacci(n-1) + fibonacci(n-2); // 否则通过递归调用自身求得前两个位置之和并返回 } int main() { int n; // 用户输入想要查询的位置编号 cout << "Enter a number: "; cin >> n; cout << "The " << n << "th Fibonacci number is: " << fibonacci(n) << endl; // 输出对应位置上的斐波那契数值 return 0; } ``` 上述代码展示了如何利用简单的条件判断与递归来获取指定索引处的斐波那契数值[^1]。然而需要注意的是这种纯递归的方法效率较低,在处理较大数值的时候可能会遇到性能瓶颈以及栈溢出的风险。为了提高效率,可以考虑采用动态规划或者迭代的方式来优化算法逻辑。 对于更高效的版本,可以参考如下改进后的非递归形式: ```cpp #include <iostream> long long fib(long long n){ if (n<=1)return n; long long prev=0,curr=1,next; for(size_t i=2;i<=n;++i){ next = curr+prev; prev = curr; curr = next; } return curr; } int main(){ size_t num; std::cout<<"Input the position of Fibonacci sequence you want to get:"; std::cin>>num; std::cout<<fib(num)<<std::endl; return 0; } ``` 这段代码使用了循环结构代替了之前的递归机制,从而大大减少了重复运算次数,并且避免了深层数量级下的潜在错误风险[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值